The basic leucine zipper (bZIP) transcription factor (TF) is widespread among eukaryotes and serves different roles in fungal processes including nutrient utilization, growth, stress responses and development. The oyster mushroom (Pleurotus ostreatus) is an important and widely cultivated edible mushroom worldwide; nevertheless, reports are lacking on the identification or function of bZIP gene family members in P. ostreatus. Herein, 11 bZIPs on 6 P. ostreatus chromosomes were systematically identified, which were classified into 3 types according to their protein sequences. Phylogenetic analysis of PobZIPs with other fungal bZIPs indicated that PobZIPs may have differentiated late. Cis-regulatory element analysis revealed that at least one type of stress-response-related element was present on each bZIP promoter. RNA-seq and RT-qPCR analyses revealed that bZIP expression patterns were altered under heat stress and different developmental stages. We combined results from GST-Pull-down, EMSA and yeast two-hybrid assays to screen a key heat stress-responsive candidate gene PobZIP3. PobZIP3 overexpression in P. ostreatus enhanced tolerance to high temperature and cultivation assays revealed that PobZIP3 positively regulates the development of P. ostreatus. RNA-seq analysis showed that PobZIP3 plays a role in glucose metabolism pathways, antioxidant enzyme activity and sexual reproduction. These results may support future functional studies of oyster mushroom bZIP TFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877997 | PMC |
http://dx.doi.org/10.1111/1751-7915.14413 | DOI Listing |
Plant Cell Rep
January 2025
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Qingdao Agricultural University, Qingdao, China. Electronic address:
Basic leucine zipper (bZIP) transcription factors serve as crucial regulators in plants' response to abiotic stress; however, its function in grapevine heat tolerance is still largely unknown. Here, we undertook a comprehensive investigation of grape genome, leading to the identification of 65 VvbZIP genes, among which 16 VvbZIPs were significantly induced under heat stress. Overexpression of VvbZIP36 enhanced heat tolerance in grape calli, while virus-induced gene silencing (VIGS) of VvbZIP36 reflected thermal sensitivity.
View Article and Find Full Text PDFHortic Res
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
Gene transcription is governed by a complex regulatory system involving changes in chromatin structure, the action of transcription factors, and the activation of -regulatory elements. Postharvest fruits are threatened by , a leading causal agent of blue mold disease and one of the most economically significant postharvest pathogens worldwide. However, information on its transcription regulatory mechanism is lagging.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Entomology, University of California, Riverside, CA 92521.
Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!