Background: Recently, dynamic contrast-enhanced (DCE) MRI with ferumoxytol as contrast agent has recently been introduced for the noninvasive assessment of placental structure and function throughout. However, it has not been demonstrated under pathological conditions.

Purpose: To measure cotyledon-specific rhesus macaque maternal placental blood flow using ferumoxytol DCE MRI in a novel animal model for local placental injury.

Study Type: Prospective animal model.

Subjects: Placental injections of Tisseel (three with 0.5 mL and two with 1.5 mL), monocyte chemoattractant protein 1 (three with 100 μg), and three with saline as controls were performed in a total of 11 rhesus macaque pregnancies at approximate gestational day (GD 101). DCE MRI scans were performed prior (GD 100) and after (GD 115 and GD 145) the injection (term = GD 165).

Field Strength/sequence: 3 T, T1-weighted spoiled gradient echo sequence (product sequence, DISCO).

Assessment: Source images were inspected for motion artefacts from the mother or fetus. Placenta segmentation and DCE processing were performed for the dynamic image series to measure cotyledon specific volume, flow, and normalized flow. Overall placental histopathology was conducted for controls, Tisseel, and MCP-1 animals and regions of tissue infarctions and necrosis were documented. Visual inspections for potential necrotic tissue were conducted for the two Tisseelx3 animals.

Statistical Tests: Wilcoxon rank sum test, significance level P < 0.05.

Results: No motion artefacts were observed. For the group treated with 1.5 mL of Tisseel, significantly lower cotyledon volume, flow, and normalized flow per cotyledon were observed for the third gestational time point of imaging (day ~145), with mean normalized flow of 0.53 minute. Preliminary histopathological analysis shows areas of tissue necrosis from a selected cotyledon in one Tisseel-treated (single dose) animal and both Tisseelx3 (triple dose) animals.

Data Conclusion: This study demonstrates the feasibility of cotyledon-specific functional analysis at multiple gestational time points and injury detection in a placental rhesus macaque model through ferumoxytol-enhanced DCE MRI.

Level Of Evidence: NA TECHNICAL EFFICACY: Stage 2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.29291DOI Listing

Publication Analysis

Top Keywords

rhesus macaque
12
dce mri
12
dynamic contrast-enhanced
8
placental
6
cotyledon-specific flow
4
flow evaluation
4
evaluation rhesus
4
macaque placental
4
placental injury
4
injury ferumoxytol
4

Similar Publications

The origin of color categories.

Proc Natl Acad Sci U S A

January 2025

Section on Perception, Cognition, Action, Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892.

To what extent does concept formation require language? Here, we exploit color to address this question and ask whether macaque monkeys have color concepts evident as categories. Macaques have similar cone photoreceptors and central visual circuits to humans, yet they lack language. Whether Old World monkeys such as macaques have consensus color categories is unresolved, but if they do, then language cannot be required.

View Article and Find Full Text PDF

The trait-specific timing of accelerated genomic change in the human lineage.

Cell Genom

January 2025

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Humans exhibit distinct characteristics compared to our primate and ancient hominin ancestors. To investigate genomic bursts in the evolution of these traits, we use two complementary approaches to examine enrichment among genome-wide association study loci spanning diseases and AI-based image-derived brain, heart, and skeletal tissue phenotypes with genomic regions reflecting four evolutionary divergence points. These regions cover epigenetic differences among humans and rhesus macaques, human accelerated regions (HARs), ancient selective sweeps, and Neanderthal-introgressed alleles.

View Article and Find Full Text PDF

SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys.

View Article and Find Full Text PDF

The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.

View Article and Find Full Text PDF

Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression.

PLoS One

January 2025

AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!