A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noninvasive Blood Pressure Monitoring via a Flexible and Wearable Piezoresistive Sensor. | LitMetric

Noninvasive Blood Pressure Monitoring via a Flexible and Wearable Piezoresistive Sensor.

ACS Omega

CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.

Published: February 2024

AI Article Synopsis

  • Continuous blood pressure (BP) monitoring is essential for reducing global mortality from hypertension, relying heavily on the accuracy of pressure sensors used in BP devices.
  • A flexible resistive pressure sensor made from reduced graphene oxide and a polydimethylsiloxane sponge was developed, demonstrating high sensitivity and significant changes in resistance with pressure, ideal for effective BP monitoring.
  • The sensor successfully measured systolic and diastolic BP, conforming to established protocols and showing minimal error when compared to traditional BP monitors, thereby validating its potential for medical applications.

Article Abstract

In the present global context, continuous blood pressure (BP) monitoring is paramount in addressing the global mortality rates attributed to hypertension. Achieving precise insights into the human cardiovascular system necessitates accurate measurement of BP, and the accuracy depends on the faithful recording of oscillations or pulsations. This task ultimately depends on the caliber of the pressure sensor embedded in the BP device. In this context, we have fabricated a flexible resistive pressure sensor based on reduced graphene oxide (rGO) and a polydimethylsiloxane (PDMS) sponge that is highly flexible and sensitive. The designed device operates effectively with a minimal bias voltage of 500 mV, at which point it showed its maximum relative change in current, reaching approximately 25%. Additionally, the sensing device showed a notable change in resistance values, exhibiting almost 100% change in resistance when subjected to a pressure of 400 mmHg and high sensitivity of 0.27 mmHg. After promising outcomes were obtained during static pressure measurement, the sensor was used for BP monitoring in humans. The sensor accurately traced the oscillometric waveform (OMW) for distinct systolic blood pressure (SBP) and diastolic blood pressure (DBP) combinations to cover a range of medical situations, including hypotension, standard or normal, and hypertension. The values of SBP, DBP, and MAP were derived from the sensor's output using the MAA technique, and the errors in these values concerning the simulator and the traditional BP monitor follow the universal AAMI/ESH/ISO protocols. Bland-Altman (B&A) correlation and scatter plots were used to compare the sensor's results and further validate the proposed sensor. The sensor showed the mean and standard deviation error in the SBP, DBP, and MBP of -0.2 ± 5.9, -0.5 ± 7, and -0.9 ± 4.7 mmHg when compared with the noninvasive blood pressure (NIBP) simulator. The pulse rate (PR) was also calculated from the same OMW for the specified value of 80 beats per minute (bpm) given by the simulator and reported a mean PR value of ∼81 bpm, close to the reference value. The findings show that the flexible resistive sensing device can accurately measure BP and replace the existing sensors of BP devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876045PMC
http://dx.doi.org/10.1021/acsomega.3c04786DOI Listing

Publication Analysis

Top Keywords

blood pressure
20
pressure
9
noninvasive blood
8
pressure monitoring
8
pressure sensor
8
flexible resistive
8
sensing device
8
change resistance
8
sbp dbp
8
sensor
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!