Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fabrication of periodontal ligament (PDL) models for in vitro dental studies has seen a wide range of techniques and materials being utilized. This paper introduces a novel dental technique that employs a digital workflow for the fabrication of artificial PDL using three-dimensional printing of flexible resin. This innovative approach offers several advantages, including enhanced accuracy and realism in simulating PDL. The digital workflow facilitates a streamlined fabrication process, ensuring efficiency and precision. By presenting this novel technique, this digital approach contributes to the advancement of in vitro dental research, providing researchers with a reliable and realistic model for studying various dental phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874785 | PMC |
http://dx.doi.org/10.1016/j.sdentj.2023.10.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!