Antibacterial applications of biologically synthesized silver nanoparticles.

Heliyon

Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli, " Via De Crecchio, 7, 80138, Naples, Italy.

Published: February 2024

Objectives: This article highlights the biological synthesis of silver nanoparticles (AgNPs) with their characteristic analysis, and it focuses on the application of synthesized NPs against multidrug resistance (MDR) bacteria. A cytotoxicity study was performed to assess the biocompatibility.

Methods: Silver nanoparticle (AgNPs) formation was confirmed by different characterization methods such as UV-Vis spectrophotometer, Dynamic light scattering (DLS)- Zeta, Fourier transform infrared (FTIR), and Transmission electron microscope (TEM). The antimicrobial activity of the AgNPs was checked against various bacterial strains of by disc diffusion, minimum inhibition concentration test (MIC), and kinetic studies. The cytotoxicity of NPs against the Vero cell line was studied by cytotoxic assay.

Results: The primary analysis of the formation of nanoparticles (NPs) was made by UV-Vis spectrophotometric analysis at 400 nm. At the same time, the efficient capping checked by FTIR shows the presence of a functional group at different wavelengths 3284, 1641,1573,1388,1288, and 1068 cm. At the same time, the transmission electron microscopic analysis (TEM) and DLS show that the shape and size of the synthesized NPs possess an average size of around ∼10-30 nm with spherical morphology. Further, the zeta potential confirmed the stability of the NPs. While the yield of NPs formation from silver salt was determined by an online yield calculator with the EDX analysis results. Synthesized NPs showed bactericidal effects against all the selected MDR pathogens with nontoxic effects against mammalian cells.

Conclusion: Our findings indicate the remarkable antimicrobial activity of the biologically synthesized AgNPs, which can be an antimicrobial agent against multi-drug-resistant bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875387PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25664DOI Listing

Publication Analysis

Top Keywords

synthesized nps
12
biologically synthesized
8
silver nanoparticles
8
transmission electron
8
antimicrobial activity
8
nps
7
synthesized
5
analysis
5
antibacterial applications
4
applications biologically
4

Similar Publications

Compared to conventional nanocarrier-based drug delivery technology, small-molecule-assembled nanomaterials provide various advantages, including higher drug loading efficiency, lower excipient-related toxicity, and a simpler formulation process. Our research constructed a mannonse-modified small-molecule-assembled nanodrug for synergistic photodynamic/chemotherapy against A549 cancer cells. The hydrophobic hypoxic-activated agent tirapazamine (TPZ) and a hydrophilic fluorescence probe Cyanine 3 (Cy3) constitute this amphiphilic prodrug via a glutathione (GSH)-responsive linkage, which could self-assemble into stable nanoparticles (NPs) and encapsulate a newly synthesized photosensitizer (SeBDP).

View Article and Find Full Text PDF

Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.

View Article and Find Full Text PDF

Antifungal potential of silver nanoparticles stabilized with the flavonoid naringenin.

J Med Microbiol

January 2025

Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maring, Colombo Avenue, 5790, Maring, PR, Brazil.

Fungal infections caused by yeast have increased in recent decades, becoming a major threat to public health. Antifungal therapy represents a challenging problem because, in addition to presenting many side effects, fungal resistance has been increasing in recent years. As a result, the search for new therapeutic agents has advanced with the use of new technologies such as nanoparticles (NPs).

View Article and Find Full Text PDF

Oral cavity cancer poses a significant health threat due to its aggressive nature and limited responsiveness to traditional therapies like chemotherapy and radiation, highlighting the need for more effective treatment options. To address this, researchers have explored a novel approach using niosome nanoparticles to co-encapsulate curcumin (CUR) and cisplatin (Cis), to enhance therapeutic efficacy. While CUR has anti-cancer properties, its poor bioavailability limits its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!