Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by HO. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875142PMC
http://dx.doi.org/10.1016/j.isci.2024.109064DOI Listing

Publication Analysis

Top Keywords

propylene epoxidation
16
ts-1 catalyzed
8
epoxidation catalyzed
8
catalyzed ts-1
8
ts-1
7
epoxidation
6
propylene
5
review perspectives
4
perspectives ts-1
4
catalyzed
4

Similar Publications

Alkaline-Assisted Excessive Impregnation for Enhancing Au Nanoparticle Loading on the TS-1 Zeolite.

Langmuir

December 2024

State Key Laboratory of Chemical Safety, 339th Songling Road, Qingdao 266071, China.

Direct epoxidation of propylene (CH) with hydrogen (H) and oxygen (O) over the Au/TS-1 catalyst is known as the "Holy Grail" reaction for propylene oxide (PO) synthesis. However, Au nanoparticle loading on TS-1 was limited by traditional deposition precipitation, impregnation and could not achieve ideal catalytic results. In this report, alkaline-assisted excessive impregnation helped to remove Cl from the Au impregnation precursor, improve the loading efficiency of Au nanoparticles and overcome the abnormal growth of nanograins.

View Article and Find Full Text PDF

Effects of Ethylene Propylene Diene Monomer (EPDM)-Based Polar Macromolecular Compatibilizers on the Low-Temperature Properties of Fluoroelastomer/EPDM Rubber Blends.

Molecules

November 2024

Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, China.

Integrating rubber with superior low-temperature capabilities, such as ethylene propylene diene monomer (EPDM), is a strategic approach to bolster the low-temperature performance of fluoroelastomer (FKM). However, FKM and EPDM are thermodynamically incompatible. This work synthetized three EPDM-based polar macromolecular compatibilizers, epoxidized EPDM (EPDM-EP), 2,2-trifluoroethylamine-grafted epoxidized EPDM (EPDM-TF), and 2,4-difluorobenzylamine-grafted epoxidized EPDM (EPDM-DF), to enhance the compatibility between FKM and EPDM.

View Article and Find Full Text PDF

Sustainable poly(lactic acid) (PLA)/poly(propylene carbonate) (PPC) blends were compatibilized by the environmentally friendly epoxidized soybean oil (ESO) through the chemical reaction of epoxy functional groups on ESO with the terminated carboxyl and hydroxyl groups of PLA/PPC. The compatibilization effect of ESO was confirmed by Fourier transform infrared spectroscopy, rheological property testing, differential scanning calorimetry, and morphological observations. It was revealed that the molecular chain entanglement between PLA and PPC was significantly enhanced and the dispersed PPC phase size was decreased, which endowed the blend with high viscosity modulus, low tan δ, and great stretchability, especially for the blend containing 1.

View Article and Find Full Text PDF

Propylene epoxidation in mild conditions using molecular O is a highly desirable reaction that represents a significant challenge in the field of heterogeneous catalysis for the synthesis of oxygenated organic compounds of industrial interest. In this work, CuO/TiO composites with different mominal CuO loadings (in the range of 0.5-8.

View Article and Find Full Text PDF

The development of a reaction system for direct epoxidation of propylene is an essential topic. Gas-phase electro-epoxidation of propylene to propylene oxide (PO) with water as the oxidant was successfully accomplished by using solid-polymer-electrolyte (SPE) electrolysis without solvents. The oxidized surface of the PtOx anode was essential for propylene epoxidation and oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!