Extracellular enzymes play important roles in myxobacteria degrading macromolecules and preying on other microorganisms. Glycoside hydrolases 19 (GH19) are widely present in myxobacteria, but their evolution and biological functions have not been fully elucidated. Here we investigated the comparative secretory proteome of c25j21 in the presence of cellulose and chitin. A total of 313 proteins were detected, including 16 carbohydrate-active enzymes (CAZymes), 7 of which were induced by cellulose or chitin, such as GH6, GH13, GH19, AA4, and CBM56. We further analyzed the sequence and structural characteristics of its three GH19 enzymes to understand their potential functions. The results revealed that myxobacterial GH19 enzymes are evolutionarily divided into two clades with different appended modules, and their different amino acid compositions in the substrate binding pockets lead to the differences in molecular surface electrostatic potentials, which may, in turn, affect their substrate selectivity and biological functions. Our study is helpful for further understanding the biological functions and catalytic mechanisms of myxobacterial CAZymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875029 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1324153 | DOI Listing |
J Biosci Bioeng
December 2024
Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:
The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.
View Article and Find Full Text PDFCurr Issues Mol Biol
August 2024
Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria.
The genus is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in . A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Genetic Engineering Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. Electronic address:
Although plants don't have chitins, they produce chitinases to protect themselves from biotic and abiotic stressors. There are two forms of chitinases found in organisms: glycosyl hydrolase 18 (GH18) and 19 (GH19) families. Plant GH19 chitinases are well known for their role in protecting against pathogens, but the roles of GH18 chitinases have not been fully elucidated.
View Article and Find Full Text PDFJ Agric Food Chem
September 2024
National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China.
GH19 (glycoside hydrolase 19) chitinases play crucial roles in the enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a novel multifunctional chitinase of GH19 (Chi19A), which contains three chitin-binding domains (ChBDs), was successfully cloned from CSC-1 and heterologously expressed in . We also generated truncated mutants of Chi19A_ΔI, Chi19A_ΔIΔII, and Chi19A_CatD consisting of two ChBDs and a catalytic domain, one ChBD and a catalytic domain, and only a catalytic domain, respectively.
View Article and Find Full Text PDFInsect Mol Biol
December 2024
Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
The digestive physiology of house dust mites (HDMs) is particularly relevant for their allergenicity since many of their allergens participate in digestion and are excreted into faecal pellets, a main source of exposure for allergic subjects. To gain insight into the mite dietary digestion, the genome of the HDM Dermatophagoides pteronyssinus was screened for genes encoding peptidases (n = 320), glycosylases (n = 77), lipases and esterases (n = 320), peptidase inhibitors (n = 65) and allergen-related proteins (n = 52). Basal gene expression and transcriptional responses of mites to dietary cystatin A, a cysteine endopeptidase inhibitor with previously shown antinutritional effect on mites, were analysed by RNAseq.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!