Aims: In Alzheimer's disease (AD), the locus coeruleus (LC) undergoes early and extensive neuronal loss, preceded by abnormal intracellular tau aggregation, decades before the onset of clinical disease. Neuromelanin-sensitive MRI has been proposed as a method to image these changes during life. Surprisingly, human post-mortem studies have not examined how changes in LC during the course of the disease relate to cerebral pathology following the loss of the LC projection to the cortex.

Methods: Immunohistochemistry was used to examine markers for 4G8 (pan-Aβ) and AT8 (ptau), LC integrity (neuromelanin, dopamine β-hydroxylase [DβH], tyrosine hydroxylase [TH]) and microglia (Iba1, CD68, HLA-DR) in the LC and related temporal lobe pathology of 59 post-mortem brains grouped by disease severity determined by Braak stage (0-II, III-IV and V-VI). The inflammatory environment was assessed using multiplex assays.

Results: Changes in the LC with increasing Braak stage included increased neuronal loss (p < 0.001) and microglial Iba1 (p = 0.005) together with a reduction in neuromelanin (p < 0.001), DβH (p = 0.002) and TH (p = 0.041). Interestingly in LC, increased ptau and loss of neuromelanin were detected from Braak stage III-IV (p = 0.001). At Braak stage V/VI, the inflammatory environment was different in the LC vs TL, highlighting the anatomical heterogeneity of the inflammatory response.

Conclusions: Here, we report the first quantification of neuromelanin during the course of AD and its relationship to AD pathology and neuroinflammation in the TL. Our findings of neuromelanin loss early in AD and before the neuroinflammatory reaction support the use of neuromelanin-MRI as a sensitive technique to identify early changes in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nan.12965DOI Listing

Publication Analysis

Top Keywords

locus coeruleus
8
alzheimer's disease
8
neuronal loss
8
braak stage
8
disease
5
changes
4
changes locus
4
coeruleus course
4
course alzheimer's
4
disease relationship
4

Similar Publications

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep.

Cell

December 2024

Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA. Electronic address:

As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.

View Article and Find Full Text PDF

Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.

View Article and Find Full Text PDF

Occipital Nerve Stimulation Selectively Modulates Top-down Inhibitory Control.

Brain Stimul

January 2025

Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Dublin, Ireland. Electronic address:

View Article and Find Full Text PDF

Objective: Our aim was to research the neuromelanin-sensitive magnetic resonance imaging (NM-MRI) features of the locus coeruleus (LC) in essential tremor (ET) patients of various cognitive states and to explore the relationships between these features and cognition.

Methods: We recruited three groups of participants, including 30 ET patients with mild cognitive impairment (ET-MCI), 57 ET patients with normal cognition (ET-NC), and 105 healthy controls (HCs). All participants underwent MRI scanning and clinical evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!