Environmental pollution has become a prominent global problem, and the potential health hazards of pollutants have caused widespread concern. However, revealing the relationship between complex-pollutant exposure and disease development remains an immense challenge. The core of environmental-health research and risk assessment is the identification of contaminants and their effects. Exposomics provides a new approach in the study of the relationship between environmental factors and human health. Both "top-down" and "bottom-up" strategies are employed in exposomics research. The development of new technologies for chemical detection and "multi-omics" has greatly facilitated the implementation of these strategies. Exposomics focuses on the measurement of an individual's lifelong exposure and aims to identify the health effects of such exposure. It involves the dynamic monitoring of external and internal exposure levels at different stages of life through traditional biomonitoring and exposomic methods. It also includes the identification of biomarkers, which indicate specific environmental exposures and the adverse effects of these exposures on health. Compared with traditional environmental-health studies, exposomics can more accurately reflect the diversity of exposure factors such as pollutants, natural factors, and lifestyles in the real environment, as well as the complexity of their in vivo processes and the responses they trigger in an organism. Powerful chemical analytical tools such as high-resolution mass spectrometry (HRMS) are widely used in studies related to the field of exposomics. Liquid chromatography-mass spectrometry (LC-MS) has been applied in the detection and analysis of environmental pollutants. Proteomics and metabolomics, as two important tools for biomarker identification and effects analysis, are widely used to explore the relationship between environmental factors and diseases. Pollutants can lead to pathological changes and even toxic effects by interacting with proteins. In the case of mixed exposure, some contaminants may present joint toxicity. The interaction between contaminants may change their environmental behavior or the amount of each contaminant that enters the human body, which, in turn, affects their health effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877475 | PMC |
http://dx.doi.org/10.3724/SP.J.1123.2023.12011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!