Gelatin was widely used as scaffold materials in 3D bio-printing due to its excellent bioactivity and availability and especially that their arginine-glycine-aspartic acid (RGD) sequences could efficiently promote cell adhesion and proliferation. In this study, an electroactive and 3D bio-printable hydrogel was prepared through a two-step chemical cross-linking process. Specifically, residual free amino groups of methacrylated gelatin (GelMA) were cross-linked with the aldehyde groups of dibenzaldehyde-terminated telechelic polyethylene glycol (DF-PEG) via Schiff base bonds, forming a gel at 37 °C. During the subsequent 3D bio-printing process, GelMA underwent UV curing, forming a secondary cross-linked network to the mechanical strength and stability of the printed structure. The uniform dispersion of carbon nanotubes (CNTs) in the GelMA/DF-PEG composite hydrogel significantly increased its conductivity. The optimized GelMA/DF-PEG composite hydrogel, i.e., 30% GelMA and 25% DF-PEG (G30D25-CNTs), exhibited superior bio-printability. When the content of CNTs was above 4%, the conductivity of G30D25-CNTs hydrogel exceeded 10 S/m, which satisfied the needs of cells for micro-current stimulation. Furthermore, the pore microstructures, swelling behavior, degradation ability and cell toxicity of G30D25-CNTs electroactive hydrogels were thoroughly evaluated. Thus, the G30D25-CNTs hydrogel with 4% MWCNTs could be considered for further application in electrical stimulation of tissue regeneration such as muscle and cardiac nerve tissue repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876640 | PMC |
http://dx.doi.org/10.1038/s41598-024-54853-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!