A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated discovery of algorithms from data. | LitMetric

Automated discovery of algorithms from data.

Nat Comput Sci

Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Published: February 2024

To automate the discovery of new scientific and engineering principles, artificial intelligence must distill explicit rules from experimental data. This has proven difficult because existing methods typically search through the enormous space of possible functions. Here we introduce deep distilling, a machine learning method that does not perform searches but instead learns from data using symbolic essence neural networks and then losslessly condenses the network parameters into a concise algorithm written in computer code. This distilled code, which can contain loops and nested logic, is equivalent to the neural network but is human-comprehensible and orders-of-magnitude more compact. On arithmetic, vision and optimization tasks, the distilled code is capable of out-of-distribution systematic generalization to solve cases orders-of-magnitude larger and more complex than the training data. The distilled algorithms can sometimes outperform human-designed algorithms, demonstrating that deep distilling is able to discover generalizable principles complementary to human expertise.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43588-024-00593-9DOI Listing

Publication Analysis

Top Keywords

deep distilling
8
distilled code
8
automated discovery
4
discovery algorithms
4
data
4
algorithms data
4
data automate
4
automate discovery
4
discovery scientific
4
scientific engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!