Objectives: This study aimed to evaluate the effect of fractional radiation on the mechanical properties of fluoride-releasing materials.
Materials And Methods: High-viscosity glass ionomer cement (F9), resin-modified glass ionomer cement (F2), glass hybrid restoration (EQ), and bioactive composite (AC) were divided into 3 subgroups: 0, 35, and 70 Gy fractional radiation doses. The specimens were subjected to surface roughness, Vickers microhardness, and compressive strength tests. The chemical components and morphology of the tested specimens were observed via energy dispersive spectroscopy and scanning electron microscopy. The data were analyzed using two-way ANOVA with Bonferroni post hoc analysis.
Results: After exposure to fractional radiation, the surface roughness increased in all the groups. F9 had the highest surface roughness, while AC had the lowest surface roughness within the same radiation dose. The Vickers microhardness decreased in F9 and EQ. The AC had the highest compressive strength among all the groups, followed by F2. More cracks and voids were inspected, and no substantial differences in the chemical components were observed.
Conclusions: After fractional radiation, the surface roughness of all fluoride-releasing materials increased, while the Vickers microhardness of F9 and EQ decreased. However, the compressive strength increased only in F2 and AC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876543 | PMC |
http://dx.doi.org/10.1038/s41405-024-00192-w | DOI Listing |
Eur J Dent
December 2024
Department of Conservative Dentistry, Faculty of Dentistry, October University for Modern Sciences and Arts, Giza, Egypt.
Objective: Continuous advancements in composite resin materials have revolutionized and expanded its clinical use, improving its physical and mechanical properties. Attaining and retaining surface texture and gloss are crucial for the long-term durability of the composite resin material. This study investigated the supra-nanospherical filler composite material compared with different composite resin materials immersed in different beverages.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517619, India.
Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.
View Article and Find Full Text PDFHeliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Research and Development, ZimVie Dental, Palm Beach Gardens, Florida, USA.
Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Türkiye, Turkey.
Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.
Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!