The utilization of machine learning has a potential to improve the environment of the development of antimicrobial agents. For practical use of machine learning, it is important that the conversion of molecules information to an appropriate descriptor because too informative descriptor requires enormous computation time and experiments for gathering data, whereas a less informative descriptor has problems in validity. In this study, we utilized a descriptor only focused on substituent. The type and the position of substituents on the molecules that have a 4-quinolone structure (11,879 compounds) were converted to the combined substituent number (CSN). While the CSN does not include information on the detailed structure, physical properties, and quantum chemistry of molecules, the prediction model constructed by machine learning of CSN indicated a sufficient coefficient of determination (0.719 for the training dataset and 0.519 for the validation dataset). In addition, this CSN can easily construct the unknown molecules library which has a relatively consistent structure by recombination of substituents (32,079,318 compounds) and screening of them. The validity of the prediction model was also confirmed by growth inhibition experiments for E. coli using the model-suggested molecules and commercially available antimicrobial agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876936 | PMC |
http://dx.doi.org/10.1038/s41598-024-53888-2 | DOI Listing |
Annu Rev Chem Biomol Eng
January 2025
1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:
Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.
View Article and Find Full Text PDFJ Bone Joint Surg Am
November 2024
Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY.
Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.
Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.
PLoS One
January 2025
Department of Computer Science, University of Jaén, Jaén, Spain.
In the production sector, the usefulness of predictive systems as a tool for management and decision-making is well known. In the agricultural sector, a correct economic balance of the farm depends on making the right decisions. For this purpose, having information in advance on crop yields is an extraordinary help.
View Article and Find Full Text PDFPLoS One
January 2025
School of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!