SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress.

Cell Death Differ

Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China.

Published: April 2024

Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043330PMC
http://dx.doi.org/10.1038/s41418-024-01266-wDOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
24
oxidative stress
16
slc15a3
8
deficiency slc15a3
8
stress macrophages
8
pulmonary
7
fibrosis
7
oxidative
5
stress
5
macrophages
5

Similar Publications

Objectives: To update the 2017 European Alliance of Associations for Rheumatology (EULAR) recommendations for treatment of systemic sclerosis (SSc), incorporating new evidence and therapies.

Methods: An international task force was convened in line with EULAR standard operating procedures. A nominal group technique exercise was performed in two rounds to define questions underpinning a subsequent systematic literature review.

View Article and Find Full Text PDF

Cell therapy: A beacon of hope in the battle against pulmonary fibrosis.

FASEB J

January 2025

Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) of elexacaftor/tezacaftor/ivacaftor (ETI) remains challenging due to a lack of clarity around the parameters that govern ETI plasma concentrations, whilst the use of concomitant CYP3A inducers rifabutin and rifampicin is not recommended. We present the complexities of TDM for ETI performed in a person with cystic fibrosis and refractory pulmonary disease. Utilising National Association of Testing Authorities (NATA) accredited assays and target considerations published by the Therapeutic Goods Administration (TGA), Australia, ETI plasma concentration variability was monitored over the course of an acute admission with added complexity from an antibiotic regimen including rifabutin, a moderate cytochrome P450 3A (CYP3A) inducer, and clofazimine, a mild CYP3A inhibitor.

View Article and Find Full Text PDF

Introduction: Diffuse parenchymal lung diseases (DPLD) cover heterogeneous types of lung disorders. Among many pathological phenotypes, pulmonary fibrosis is the most devastating and represents a characteristic sign of idiopathic pulmonary fibrosis (IPF). Despite a poor prognosis brought by pulmonary fibrosis, there are no specific diagnostic biomarkers for the initial development of this fatal condition.

View Article and Find Full Text PDF

MSC-derived exosome ameliorates pulmonary fibrosis by modulating NOD 1/NLRP3-mediated epithelial-mesenchymal transition and inflammation.

Heliyon

January 2025

Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China.

Background: Pulmonary fibrosis (PF) is an irreversible and usually fatal lung disease. In recent years, the therapeutic role of exosomes derived from mesenchymal stem cells (MSC-exos) in anti-fibrotic treatment has received much attention. In this study, we aimed to determine the anti-fibrotic properties and related molecular mechanisms of MSC-exos in Bleomycin(BLM)-induced PF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!