Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877765PMC
http://dx.doi.org/10.1186/s12951-024-02336-4DOI Listing

Publication Analysis

Top Keywords

chondrocyte hypertrophy
16
macrophage polarization
12
polarization chondrocyte
12
targeting tlr3
12
mir-26b-5p
11
macrophage-derived exosomal
8
exosomal mir-26b-5p
8
tlr3 col10a1
8
mir-26b-5p target
8
effects mir-26b-5p
8

Similar Publications

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.

View Article and Find Full Text PDF

Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans.

Bone Res

January 2025

The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.

Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.

View Article and Find Full Text PDF

Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, analyses, experiments and models to identify new therapeutic candidates targeting these processes. Data mining of transcriptomic datasets identified EPHA2, a receptor tyrosine kinase associated with cancer, as being linked to both inflammation and endochondral ossification in osteoarthritis.

View Article and Find Full Text PDF

HBP-A is the main active component of a traditional Chinese medicine Huaizhen Yanggan Capsule, for the remarkable treatment of knee osteoarthritis (KOA). This study aimed to elucidate the ameliorative effect of HBP-A on meniscus hypertrophy and mineralisation in KOA and the molecular mechanism of its action. An Hartley guinea pig model of KOA that underwent anterior cruciate ligament transection (ACLT) and a model of rat primary meniscus fibrochondrocytes (PMFs) were used to investigate the ameliorative effect of HBP-A on meniscal hypertrophy and calcification and its signal transduction mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!