Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877765 | PMC |
http://dx.doi.org/10.1186/s12951-024-02336-4 | DOI Listing |
Cells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.
View Article and Find Full Text PDFBone Res
January 2025
The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, analyses, experiments and models to identify new therapeutic candidates targeting these processes. Data mining of transcriptomic datasets identified EPHA2, a receptor tyrosine kinase associated with cancer, as being linked to both inflammation and endochondral ossification in osteoarthritis.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
HBP-A is the main active component of a traditional Chinese medicine Huaizhen Yanggan Capsule, for the remarkable treatment of knee osteoarthritis (KOA). This study aimed to elucidate the ameliorative effect of HBP-A on meniscus hypertrophy and mineralisation in KOA and the molecular mechanism of its action. An Hartley guinea pig model of KOA that underwent anterior cruciate ligament transection (ACLT) and a model of rat primary meniscus fibrochondrocytes (PMFs) were used to investigate the ameliorative effect of HBP-A on meniscal hypertrophy and calcification and its signal transduction mechanism of action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!