A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MTFN: multi-temporal feature fusing network with co-attention for DCE-MRI synthesis. | LitMetric

MTFN: multi-temporal feature fusing network with co-attention for DCE-MRI synthesis.

BMC Med Imaging

Key Laboratory of Intelligent Computing in Medical Image MIIC, Northeastern University, Shenyang, China.

Published: February 2024

Background: Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) plays an important role in the diagnosis and treatment of breast cancer. However, obtaining complete eight temporal images of DCE-MRI requires a long scanning time, which causes patients' discomfort in the scanning process. Therefore, to reduce the time, the multi temporal feature fusing neural network with Co-attention (MTFN) is proposed to generate the eighth temporal images of DCE-MRI, which enables the acquisition of DCE-MRI images without scanning. In order to reduce the time, multi-temporal feature fusion cooperative attention mechanism neural network (MTFN) is proposed to generate the eighth temporal images of DCE-MRI, which enables DCE-MRI image acquisition without scanning.

Methods: In this paper, we propose multi temporal feature fusing neural network with Co-attention (MTFN) for DCE-MRI Synthesis, in which the Co-attention module can fully fuse the features of the first and third temporal image to obtain the hybrid features. The Co-attention explore long-range dependencies, not just relationships between pixels. Therefore, the hybrid features are more helpful to generate the eighth temporal images.

Results: We conduct experiments on the private breast DCE-MRI dataset from hospitals and the multi modal Brain Tumor Segmentation Challenge2018 dataset (BraTs2018). Compared with existing methods, the experimental results of our method show the improvement and our method can generate more realistic images. In the meanwhile, we also use synthetic images to classify the molecular typing of breast cancer that the accuracy on the original eighth time-series images and the generated images are 89.53% and 92.46%, which have been improved by about 3%, and the classification results verify the practicability of the synthetic images.

Conclusions: The results of subjective evaluation and objective image quality evaluation indicators show the effectiveness of our method, which can obtain comprehensive and useful information. The improvement of classification accuracy proves that the images generated by our method are practical.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875895PMC
http://dx.doi.org/10.1186/s12880-024-01201-yDOI Listing

Publication Analysis

Top Keywords

feature fusing
12
network co-attention
12
temporal images
12
images dce-mri
12
neural network
12
generate eighth
12
eighth temporal
12
dce-mri
9
images
9
multi-temporal feature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!