Bonding diamond to the back side of gallium nitride (GaN) electronics has been shown to improve thermal management in lateral devices; however, engineering challenges remain with the bonding process and characterizing the bond quality for vertical device architectures. Here, integration of these two materials is achieved by room-temperature compression bonding centimeter-scale GaN and a diamond die via an intermetallic bonding layer of Ti/Au. Recent attempts at GaN/diamond bonding have utilized a modified surface activation bonding (SAB) method, which requires Ar fast atom bombardment immediately followed by bonding within the same tool under ultrahigh vacuum (UHV) conditions. The method presented here does not require a dedicated SAB tool yet still achieves bonding via a room-temperature metal-metal compression process. Imaging of the buried interface and the total bonding area is achieved via transmission electron microscopy (TEM) and confocal acoustic scanning microscopy (C-SAM), respectively. The thermal transport quality of the bond is extracted from spatially resolved frequency-domain thermoreflectance (FDTR) with the bonded areas boasting a thermal boundary conductance of >100 MW/m·K. Additionally, Raman maps of GaN near the GaN-diamond interface reveal a low level of compressive stress, <80 MPa, in well-bonded regions. FDTR and Raman were coutilized to map these buried interfaces and revealed some poor thermally bonded areas bordered by high-stress regions, highlighting the importance of spatial sampling for a complete picture of bond quality. Overall, this work demonstrates a novel method for thermal management in vertical GaN devices that maintains low intrinsic stresses while boasting high thermal boundary conductances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c17778 | DOI Listing |
Phys Chem Chem Phys
January 2025
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
Herein, the interfacial effects on calcium carbonate clustering within two-dimensional (2D) graphene nanochannels were systematically investigated using molecular dynamics simulations. The distribution characteristics of the ions at the interface can be attributed to the ordered water layers within the 2D nanochannels. The orientation of CO is approximately perpendicular to the interface, which can be attributed to hydrogen bonding and its association with Ca at the interface region.
View Article and Find Full Text PDFBiomater Sci
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China.
Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Objective: Previous observational studies suggest a potential link between gut microbiota, metabolites, and diabetic nephropathy. However, the exact causal relationship among these factors remains unclear.
Method: We conducted a two-sample bidirectional Mendelian randomization study using summary statistics from the IEU OpenGWAS Project database to investigate gut microbiota, metabolites, and diabetic nephropathy.
Chem Sci
January 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-Sen University Guangzhou 510275 China
The separation of C cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical processes in the petrochemical industry. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C-Br⋯N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113 ± 2; purity up to 98% +), which is the highest record for benzene/cyclohexane/cyclohexene separation to date.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!