AI Article Synopsis

  • Tissue engineering that focuses on individual cells has improved therapeutic effectiveness, leveraging droplet microfluidics for precise cell encapsulation in hydrogels.
  • A new microfluidic device encapsulates single cells in polyethylene glycol norbornene (PEGNB) hydrogels, allowing for high cell viability and effective mixing through a serpentine channel.
  • Encapsulated mesenchymal stromal cells (MSCs) not only survive well but also express anti-inflammatory genes and demonstrate significant benefits in reducing inflammation and liver damage in a mouse model.

Article Abstract

Tissue engineering at single-cell resolution has enhanced therapeutic efficacy. Droplet microfluidics offers a powerful platform that allows deterministic single-cell encapsulation into aqueous droplets, yet the direct encapsulation of cells into microgels remains challenging. Here, the design of a microfluidic device that is capable of single-cell encapsulation within polyethylene glycol norbornene (PEGNB) hydrogels on-chip is reported. Cells are first ordered in media within a straight microchannel via inertial focusing, followed by the introduction of PEGNB solution from two separate, converging channels. Droplets are thoroughly mixed by passage through a serpentine channel, and microgels are formed by photo-photopolymerization. This platform uniquely enables both single-cell encapsulation and excellent cell viability post-photo-polymerization. More than 90% of singly encapsulated mesenchymal stromal cells (MSCs) remain alive for 7 days. Notably, singly encapsulated MSCs have elevated expression levels in genes that code anti-inflammatory cytokines, for example, IL-10 and TGF-β, thus enhancing the secretion of proteins of interest. Following injection into a mouse model with induced inflammation, singly encapsulated MSCs show a strong retention rate in vivo, reduce overall inflammation, and mitigate liver damage. These translational results indicate that deterministic single-cell encapsulation could find use in a broad spectrum of tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246722PMC
http://dx.doi.org/10.1002/adhm.202304386DOI Listing

Publication Analysis

Top Keywords

single-cell encapsulation
20
deterministic single-cell
12
singly encapsulated
12
mesenchymal stromal
8
stromal cells
8
encapsulated mscs
8
encapsulation
6
single-cell
5
encapsulation peg
4
peg norbornene
4

Similar Publications

Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.

View Article and Find Full Text PDF

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

An off-chip platform for on-demand, single-target encapsulation for ultrasensitive biomarker detection.

Biosens Bioelectron

January 2025

Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address:

Closed-channel microfluidic systems offer versatile on-chip capabilities for bioanalysis but often face complex fabrication and operational challenges. In contrast, free-boundary off-chip microfluidic platforms are relatively simple to fabricate and operate but lack the ability to perform complex tasks such as on-demand single-target sorting and encapsulation. To address these challenges, we develop an off-chip platform powered by a fluorescent-activated mechanical droplet sorting and production (FAM-DSP) system.

View Article and Find Full Text PDF

Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells.

ACS Nano

January 2025

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!