Core needle biopsy is a part of the histopathological process, which is required for cancerous tissue examination. The most common method to guide the needle inside of the body is ultrasound screening, which in greater part is also the only guidance method. Ultrasound screening requires user experience. Furthermore, patient involuntary movements such as breathing might introduce artifacts and blur the screen. Optically enhanced core needle biopsy probe could potentially aid interventional radiologists during this procedure, providing real-time information on tissue properties close to the needle tip, while it is advancing inside of the body. In this study, we used diffuse optical spectroscopy in a custom-made core needle probe for real-time tissue classification. Our aim was to provide initial characteristics of the smart needle probe in the differentiation of tissues and validate the basic purpose of the probe of informing about breaking into a desired organ. We collected optical spectra from rat blood, fat, heart, kidney, liver, lungs, and muscle tissues. Gathered data were analyzed for feature extraction and evaluation of two machine learning-based classifiers: support vector machine and -nearest neighbors. Their performances on training data were compared using subject-independent -fold cross-validation. The best classifier model was chosen and its feasibility for real-time automated tissue recognition and classification was then evaluated. The final model reached nearly 80% of correct real-time classification of rat organs when using the needle probe during real-time classification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070118 | PMC |
http://dx.doi.org/10.1177/00037028241230568 | DOI Listing |
World Neurosurg
January 2025
Bhabha Atomic Research Centre, Mumbai, India-400085.
This paper deals with neuro-registration using tele-manipulation (Master-Slave Manipulation) to facilitate tele-surgery and enhance the overall accuracy and reach of the robot-assisted neurosurgery. Accurate Neuro-registration is important as the success of the surgical procedure highly depends on it. A 6-degree-of-freedom Parallel Kinematic Mechanism (6D-PKM) master-slave robot in tele-manipulation mode is utilized for both neuro-registration and neurosurgery.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China.
Due to the price and demand of having increased dramatically, adulteration with other fungi is a common problem. Thus, a reliable method of authentic identification is essential. In the present work, a rapid DNA extraction and double-tailed recombinase polymerase amplification (RPA) coupled with nucleic acid hybridization lateral flow strip (NAH-LFS) was developed to distinguish authentic ingredients from other fungi substitutes.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Organ Support and Automation Technologies Group, U.S. Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, San Antonio, TX 78234, USA.
Hemorrhage remains a leading cause of death in both military and civilian trauma settings. Oftentimes, the control and treatment of hemorrhage requires central vascular access and well-trained medical personnel. Automated technology is being developed that can lower the skill threshold for life-saving interventions.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications.
View Article and Find Full Text PDFInt J Obstet Anesth
December 2024
Department of Biomedical Engineering and the School of Brain Sciences and Cognition, Ben Gurion University of the Negev, Beer Sheva, Israel.
Background: Correct identification of the epidural space requires extensive training for technical proficiency. This study explores a novel bimanual haptic simulator designed for the precise insertion of an epidural needle based on loss-of-resistance (LOR) detection, providing realistic dual-hand force feedback.
Methods: The simulator, equipped with two haptic devices connected to a Tuohy needle and an LOR syringe, was designed to simulate the tissues' resistive forces felt by the user during the procedure, offer anatomical variability and record detailed performance metrics for personalized feedback.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!