Purpose: Radiation therapy (RT) of pediatric brain cancer is known to be associated with long-term neurocognitive deficits. Although target and organs-at-risk (OARs) are contoured as part of treatment planning, other structures linked to cognitive functions are often not included. This paper introduces a novel automatic segmentation tool specifically designed for the unique challenges posed by pediatric patients undergoing brain RT, as well as its seamless integration into the existing clinical workflow.
Methods And Materials: Images of 47 pediatric brain cancer patients aged 1 to 20 years old and 33 two-year-old healthy infants were used to train a vision transformer, UNesT, for the segmentation of five brain OARs. The trained model was then incorporated to clinical workflow via DICOM connections between a treatment planning system (TPS) and a server hosting the trained model such that scans are sent from TPS to the server, automatically segmented, and sent back to TPS for treatment planning.
Results: The proposed automatic segmentation framework achieved a median dice similarity coefficient of 0.928 (frontal white matter), 0.908 (corpus callosum), 0.933 (hippocampi), 0.819 (temporal lobes), and 0.960 (brainstem) with a mean ± SD run time of 1.8 ± 0.67 s over 20 test cases.
Conclusions: The pediatric brain segmentation tool showed promising performance on five OARs linked to neurocognitive functions and can easily be extended for additional structures. The proposed integration to the clinic enables easy access to the tool from clinical platforms and minimizes disruption to existing workflow while maximizing its benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930010 | PMC |
http://dx.doi.org/10.1002/acm2.14310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!