There is considerable recent interest in the synthesis and development of peptide-based materials as mimics of natural biological assemblies that utilize proteins and peptides to form organized structures and develop beneficial properties. Due to their potential compatibility with living organisms, synthetic peptide materials are also being developed for applications such as cell grafting, therapeutic delivery, and implantable diagnostic devices. One desirable feature for such applications is the ability to design materials that can respond to stimuli by changes in their structure or properties under biologically relevant conditions. Peptide and protein assemblies can respond to stimuli, such as changes in temperature, solution pH, ions present in media, or interactions with other biomacromolecules. An exciting area of emerging research is focused on how biology uses the chemistry of sulfur-containing amino acids as a means to regulate biological processes. These concepts have been utilized and expanded in recent years to enable the development of peptide materials with readily switchable properties.The incorporation of sulfur atoms in polypeptides, peptides, and proteins provides unique sites that can be used to alter the physical and biological properties of these materials. Sulfur-containing amino acid residues, most often cysteine and methionine, are able to undergo a variety of selective chemical and enzyme-mediated reactions, which can be broadly characterized as redox or alkylation processes. These reactions often proceed under physiologically relevant conditions, can be reversible, and are significant in that they can alter residue polarity as well as conformations of peptide chains. These sulfur-based reactions are able to switch molecular and macromolecular properties of peptides and proteins in living systems and recently have been applied to synthetic peptide materials. Naturally occurring "sulfur switches" can be reversible or irreversible and are often triggered by enzymatic activity. Sulfur switches in peptide materials can also be triggered using oxidation/reduction and alkylation as well as photochemical reactions. The application of sulfur switches to peptide materials has greatly expanded the scope of these switches due to the ability to readily incorporate a wide variety of noncanonical sulfur-containing synthetic amino acids.Sulfur switches have been shown to provide considerable potential to reversibly alter peptide material properties under mild physiologically relevant conditions. An important molecular feature of sulfur-containing amino acid residues was found to be the location of sulfur atoms in the side chains. The variation of sulfur atom positions from the backbone by single bond lengths was found to significantly affect polypeptide chain conformations upon oxidation-reduction or alkylation/dealkylation reactions. With the successful adaptation of sulfur switches to peptide materials, future studies can explore how these switches affect how these materials interact with biological systems. This Account provides an overview of the different types of sulfur switch reactions found in biology and their properties and the elaboration of these switches in synthetic systems with a focus on recent developments and applications of reversible sulfur switches in peptide materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918826 | PMC |
http://dx.doi.org/10.1021/acs.accounts.3c00626 | DOI Listing |
Lancet
January 2025
Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:
Background: Dermatomyositis is a chronic autoimmune disease with distinctive cutaneous eruptions and muscle weakness, and the pathophysiology is characterised by type I interferon (IFN) dysregulation. This study aims to assess the efficacy, safety, and target engagement of dazukibart, a potent, selective, humanised IgG1 neutralising monoclonal antibody directed against IFNβ, in adults with moderate-to-severe dermatomyositis.
Methods: This multicentre, double-blind, randomised, placebo-controlled, phase 2 trial was conducted at 25 university-based hospitals and outpatient sites in Germany, Hungary, Poland, Spain, and the USA.
Chemistry
January 2025
Xi'an Jiaotong University, School of Chemistry, No.28, West Xianning Road, 710049, Xi'an, CHINA.
Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.
View Article and Find Full Text PDFNutrients
December 2024
Department of Cardiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
Background: Micronutrient deficiencies are common and play a significant role in the prognosis of many chronic diseases, including heart failure (HF), but their prevalence in HF is not well known. As studies have traditionally focused on causes originating within the intestines, exocrine pancreatic insufficiency (EPI) has been overlooked as a potential contributor. The exocrine pancreas enables the absorption of various (fat-soluble) micronutrients and may be insufficient in HF.
View Article and Find Full Text PDFFoods
December 2024
College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
Raw protein materials are beneficial for human health, so they are being increasingly used in health foods. In recent years, there has been more and more research on and applications of raw protein materials, but few teams have conducted a detailed review of the application status of raw protein materials in China's health foods, the basis for their compliance and use, and the research on their health care functions. Therefore, this review evaluates the application of animal and plant proteins in China's health foods, the impact of animal and plant proteins on human health, and future research recommendations for animal and plant proteins.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!