The evaluation of control schemes for left ventricular assist devices (LVADs) requires the utilization of an appropriate model of the human cardiovascular system. Given that different patients and experimental data yield varying performance of the cardiovascular models (CVMs) and their respective parameters, it becomes crucial to assess the reliable operation of controllers. This study aims to assess the performance and reliability of various LVAD controllers using two state-of-the-art CVMs, with a specific focus on the impact of interpatient variability. Extreme test cases were employed for evaluation, incorporating both in silico and in vitro experiments. The differences observed in response between the studied CVMs can be attributed to variations in their structures and parameters. Specifically, the model with smaller compartments exhibits higher overload rates, whereas the other model demonstrates increased sensitivity to changes in preload and afterload, resulting in more frequent suction events (34.2% vs. 8.5% for constant speed mode). These findings along with the varying response of the tested controllers highlight the influence of the selected CVM emphasizing the need to test each LVAD controller with multiple CVMs or, at least, a range of parameter sets. This approach ensures sufficient evaluation of the controller's efficacy in addressing interpatient variability.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000002143DOI Listing

Publication Analysis

Top Keywords

reliable operation
8
cardiovascular models
8
silico vitro
8
interpatient variability
8
performance reliable
4
operation physiological
4
controllers
4
physiological controllers
4
controllers cardiovascular
4
models silico
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!