Successful Powerlifting in a Unilateral, Transtibial Amputee: A Descriptive Case Series.

J Strength Cond Res

Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida.

Published: May 2024

Beausejour, JP, Guinto, G, Artrip, C, Corvalan, A, Mesa, MF, Lebron, MA, and Stock, MS. Successful powerlifting in a unilateral, transtibial amputee: A descriptive case series. J Strength Cond Res 38(5): e243-e252, 2024-There are no reports in the literature of powerlifting success after amputation. We had the unique opportunity to characterize functional outcomes, strength, muscle contractility and size, and corticospinal excitability in an accomplished, competitive powerlifter (best competition squat = 205.0 kg, deadlift = 262.7 kg) with a unilateral, transtibial amputation relative to amputee controls. Four men (age range = 23-49 years) with unilateral, lower-limb amputation (3 transtibial, 1 transfemoral) participated in 1 laboratory visit. We assessed 10-m gait speed, the timed up and go (TUG) test, 5-time sit-to-stand performance (5TSTS), contractile properties of the vastus lateralis (VL) and medial gastrocnemius by tensiomyography, and VL cross-sectional area (CSA) by ultrasonography. Unilateral assessments for the intact limb included isokinetic knee extension and flexion torque and power and transcranial magnetic stimulation derived corticospinal excitability. An interview with the powerlifter provided contextual perspective. Compared with the control subjects, the powerlifter performed the 5TSTS faster (6.8%), exhibited faster VL contraction times (intact limb = 12.2%; residual limb = 23.9%), and showed larger VL CSA for the intact limb (46.7%). The powerlifter exhibited greater knee extension and flexion peak torque and mean power, particularly at 180°·s -1 , as well as greater corticospinal excitability for the intact VL (65.6%) and tibialis anterior (79.6%). By contrast, the control subjects were faster in the TUG (18.3%) and comfortable (13.0%) and fast (21.4%) in the 10-m walk test. The major themes of our interview included needing to modify lifting mechanics, persistence, and remarkable pain tolerance. Our findings highlight the impressive neuromuscular adaptations that are attainable after lower-limb amputation.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0000000000004733DOI Listing

Publication Analysis

Top Keywords

unilateral transtibial
12
corticospinal excitability
12
intact limb
12
successful powerlifting
8
powerlifting unilateral
8
transtibial amputee
8
amputee descriptive
8
descriptive case
8
case series
8
lower-limb amputation
8

Similar Publications

Introduction: Prosthetic silicone liners improve comfort and skin protection and allow the use of total surface bearing (TSB) sockets, which provide enhanced proprioception and comfort. Unfortunately, silicone liners are cost-prohibitive in resource-limited environments (RLEs) where patellar tendon bearing (PTB) sockets with PE-lite liners remain standard, leading to patient discomfort and skin issues.

Objective: This study evaluates the benefits and durability of an affordable silicone liner locally manufactured in an RLE to promote TSB socket adoption, aiming to enhance prosthetic care and patient outcomes.

View Article and Find Full Text PDF

The effect of prosthetic alignment on lower limb kinetics in people with a transtibial bone-anchored prosthesis: An experimental within-subject study.

Gait Posture

January 2025

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam and Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Research and Development, Military Rehabilitation Centre Aardenburg, Doorn, the Netherlands.

Background: The alignment of a bone-anchored prosthesis has consequences for the external moments around the residual joints and implant, and these external moments can lead to serious negative long-term effects. A clear understanding of the relationship between transtibial prosthetic alignment and external joint and implant moment for bone-anchored prosthetic users is still lacking.

Research Question: What is the effect of systematic frontal plane prosthetic alignment changes on lower limb external joint moments in people with a transtibial bone-anchored prosthesis?

Methods: Participants underwent gait analysis on an instrumented dual belt treadmill.

View Article and Find Full Text PDF

Background: Walking speed is a measure of functional mobility that is relatively easy to quantify. In people with lower limb amputation, reduced walking speed has been linked with specific atypical spatiotemporal gait parameters. However, the influence of atypical spatiotemporal gait parameters on the walking speed of people with unilateral transtibial amputation (TTA) and transfemoral amputation (TFA) remains unclear.

View Article and Find Full Text PDF

Long-term performance and stability of implanted neural interfaces in individuals with lower limb loss.

J Neural Eng

January 2025

Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.

High-density nerve cuffs have been successfully utilized to restore somatosensation in individuals with lower-limb loss by interfacing directly with the peripheral nervous system. Elicited sensations via these devices have improved various functional outcomes, including standing balance, walking symmetry, and navigating complex terrains. Deploying neural interfaces in the lower limbs of individuals with limb loss presents unique challenges, particularly due to repetitive muscle contractions and the natural range of motion in the knee and hip joints for transtibial and transfemoral amputees, respectively.

View Article and Find Full Text PDF

Cycling is a beneficial physical activity for rehabilitating individuals with lower-limb amputations and serves as a feasible leisure sport. However, the optimal bicycle configuration for cycling with a unilateral transtibial prosthesis at leisure levels has not been investigated. For saddle height at professional cycling levels, existing literature suggests utilizing the same configuration as that used by intact cyclists, where the knee reaches 25-35° at maximum extension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!