Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cs00821e | DOI Listing |
ACS Nano
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
Two-dimensional van der Waals (vdW) layered materials not only are an intriguing fundamental scientific research platform but also provide various applications to multifunctional quantum devices in the field-effect transistors (FET) thanks to their excellent physical properties. However, a metal-semiconductor (MS) interface with a large Schottky barrier causes serious problems for unleashing their intrinsic potentials toward the advancements in high-performance devices. Here, we show that exfoliated vdW Dirac semimetallic PtTe can be an excellent electrode for electrons in MoS FETs.
View Article and Find Full Text PDFMater Horiz
December 2024
School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
The decoupling of electronic states between metals and semiconductors through controlled construction of artificial van der Waals (vdW) heterojunctions enables tailored Schottky barriers. However, the interfacial chemistry, especially involving solid-liquid interfaces, remains unexplored. Here, first principles calculations reveal unexpected strong Fermi-level pinning in various metal/MoS vdW heterojunctions with intercalated ice-like water bilayers.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.
Magnetic two-dimensional (2D) materials have garnered significant attention for their potential to revolutionize 2D spintronics due to their unique magnetic properties. However, their air-sensitivity and highly insulating nature of the magnetic semiconductors present substantial challenges for device fabrication with effective contacts. In this study, we introduce a polycarbonate (PC)-assisted transfer method that effectively forms van der Waals (vdW) contacts with 2D materials, streamlining the fabrication process without the need for additional lithography.
View Article and Find Full Text PDFInorg Chem
November 2024
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
It is an arduous issue to significantly improve the charge separation efficiency of polymer photocatalysts due to their inherently high exciton binding energy. Herein, based on an interfacial coupling and atom diffusion strategy, a metal-free 3D/2D van der Waals (VdW) heterojunction is fabricated through the modification of rich-vacancy wrinkle-like S (Vs-S) microspheres on the surface of S-doped polymeric carbon nitride (S-PCN) nanosheets. The insight into the mechanism reveals that the interfacial coupling effect induces a strong built-in electric field from S-PCN to Vs-S, and the carrier transfer behavior abides by the type-II charge transfer pathway, thereby dramatically improving the separation efficiency and transport kinetics of photogenerated carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!