Conformable and wireless charging energy storage devices play important roles in enabling the fast development of wearable, non-contact soft electronics. However, current wireless charging power sources are still restricted by limited flexural angles and fragile connection of components, resulting in the failure expression of performance and constraining their further applications in health monitoring wearables and moveable artificial limbs. Herein, we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor, which building blocks (including electrolyte, electrode and substrate) are all evaporated by liquid precursor. Owing to the infiltration and permeation of the liquid, each part of the integrated device attached firmly with each other, forming a compact and all-in-one configuration. In addition, benefitting from the controllable volume of electrode solution precursor, the electrode thickness is easily regulated varying from 11.7 to 112.5 μm. This prepared thin IWC-MSC skin can fit well with curving human body, and could be wireless charged to store electricity into high capacitive micro-supercapacitors (11.39 F cm) of the integrated device. We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876509 | PMC |
http://dx.doi.org/10.1007/s40820-024-01352-1 | DOI Listing |
Nano Lett
January 2025
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China.
The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA.
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications.
View Article and Find Full Text PDFNat Commun
January 2025
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.
View Article and Find Full Text PDFSmall
December 2024
Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
The design of mixed-dimensional heterostructures has emerged to be a new frontier of research as it induces exciting physical/chemical properties that extend beyond the fundamental properties of single dimensional systems. Therefore, rational design of heterostructured materials with novel surface chemistry and tailored interfacial properties appears to be very promising for the devices such as the gas sensors. Here, a highly sensitive gas sensor device is constructed by employing heterostructures of boron doped molybdenum disulfide quantum dots (B-MoS Qdots) assembled into the matrix of TiCT MXene.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Electronic Engineering, International Islamic University, Islamabad 44000, Pakistan.
The emerging wireless energy transfer technology enables sensor nodes to maintain perpetual operation. However, maximizing the network performance while preserving short charging delay is a great challenge. In this work, a Wireless Mobile Charger (MC) and a directional charger (DC) were deployed to transmit wireless energy to the sensor node to improve the network's throughput.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!