Metal nanoparticles (MNPs) have gained significant attention in recent years for their potential use as effective antimicrobial agents for controlling plant pathogens. This review article summarizes the recent advances in the role of MNPs in the control of plant pathogens, focusing on their mechanisms of action, applications, and limitations. MNPs can act as a broad-spectrum antimicrobial agent against various plant pathogens, including bacteria, fungi, and viruses. Different types of MNPs, such as silver, copper, zinc, iron, and gold, have been studied for their antimicrobial properties. The unique physicochemical properties of MNPs, such as their small size, large surface area, and high reactivity, allow them to interact with plant pathogens at the molecular level, leading to disruption of the cell membrane, inhibition of cellular respiration, and generation of reactive oxygen species. The use of MNPs in plant pathogen control has several advantages, including their low toxicity, selectivity, and biodegradability. However, their effectiveness can be influenced by several factors, including the type of MNP, concentration, and mode of application. This review highlights the current state of knowledge on the use of MNPs in plant pathogen control and discusses the future prospects and challenges in the field. Overall, the review provides insight into the potential of MNPs as a promising alternative to conventional chemical agents for controlling plant pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-024-03911-5 | DOI Listing |
Microb Ecol
January 2025
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China.
In the past decades, dozens of invasion hypotheses have been proposed to elucidate the invasion mechanisms of exotic species. Among them, the accumulation of local pathogens hypothesis (ALPH) posits that invasive plants can accumulate local generalist pathogens that have more negative effect on native species than on themselves; as a result, invasive plants might gain competitive advantages that eventually lead to their invasion success. However, research on this topic is still quite insufficient.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. Electronic address:
Ethnopharmacological Relevance: Changyanning tablets (CYN) are a marketed traditional Chinese medicine composed of Diijincao (Euphorbia humifusa Willd.), Jinmaoercao (Hedyotis chrysotricha (Palib.) Merr.
View Article and Find Full Text PDFMicrob Pathog
January 2025
High School of Technology Laayoune, Ibn Zohr University, Morocco.
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Cooperative Extension, Napa, California, United States;
The timely detection of viral pathogens in vineyards is a critical aspect of management. Diagnostic methods can be labor-intensive and may require specialized training or facilities. The emergence of artificial intelligence (AI) has the potential to provide innovative solutions for disease detection but requires a significant volume of high-quality data as input.
View Article and Find Full Text PDFPlant Dis
January 2025
The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;
In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!