A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying XGBoost and SHAP to Open Source Data to Identify Key Drivers and Predict Likelihood of Wolf Pair Presence. | LitMetric

Wolves have returned to Germany since 2000. Numbers have grown to 209 territorial pairs in 2021. XGBoost machine learning, combined with SHAP analysis is applied to predict German wolf pair presence in 2022 for 10 × 10 km grid cells. Model input consisted of 38 variables from open sources, covering the period 2000 to 2021. The XGBoost model predicted well, with 0.91 as the AUC. SHAP analysis ranked the variables: distance to the closest neighboring wolf pair was the main driver for a grid cell to become occupied by a wolf pair. The clustering tendency of related wolves seems to be an important explanatory factor here. Second was the percentage of wooded area. The next eight variables related to wolf presence in the preceding year, except at fifth, eighth and tenth position in the total order: human density (square root) in the grid, percentage arable land and road density respectively. Other variables including the occurrence of wild prey were the weakest predictors. The SHAP analysis also provided crucial added value in identifying a variable that had threshold values where its contribution to the prediction changed from positive to negative or vice versa. For instance, low density of people increased the probability of wolf pair presence, whereas a high density decreased this probability. Cumulative lift techniques showed that the model performed almost four times better than random prediction. The combination of XGBoost, SHAP and cumulative lift techniques is new in wolf management and conservation, allowing for the focusing of educational and financial resources.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-024-01941-1DOI Listing

Publication Analysis

Top Keywords

wolf pair
20
pair presence
12
shap analysis
12
xgboost shap
8
2021 xgboost
8
cumulative lift
8
lift techniques
8
wolf
7
shap
5
pair
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!