Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electrochemical conversion of oxygen holds great promise in the development of sustainable energy for various applications, such as water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. Oxygen electrocatalysts are needed that are both highly efficient and affordable, since they can serve as alternatives to costly precious-metal-based catalysts. This aspect is particularly significant for their practical implementation on a large scale in the future. Herein, highly porous polyhedron-entrapped metal-organic framework (MOF)-assisted CoTe/MnTe heterostructure one-dimensional nanorods were initially synthesized using a simple hydrothermal strategy and then transformed into ZIF-67 followed by tellurization which was used as a bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The designed MOF CoTe/MnTe nanorod electrocatalyst exhibited superior activity for both OER (η = 220 mV@ 10 mA cm) and ORR ( = 0.81 V vs RHE) and outstanding stability. The exceptional achievement could be primarily credited to the porous structure, interconnected designs, and deliberately created deficiencies that enhanced the electrocatalytic activity for the OER/ORR. This improvement was predominantly due to the enhanced electrochemical surface area and charge transfer inherent in the materials. Therefore, this simple and cost-effective method can be used to produce highly active bifunctional oxygen electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c18654 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!