A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Confining Polymer Electrolyte in MOF for Safe and High-Performance All-Solid-State Sodium Metal Batteries. | LitMetric

Confining Polymer Electrolyte in MOF for Safe and High-Performance All-Solid-State Sodium Metal Batteries.

Angew Chem Int Ed Engl

Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou University, 325035, Wenzhou, Zhejiang, China.

Published: April 2024

Nanoconfined polymer molecules exhibit profound transformations in their properties and behaviors. Here, we present the synthesis of a polymer-in-MOF single ion conducting solid polymer electrolyte, where polymer segments are partially confined within nanopores ZIF-8 particles through Lewis acid-base interactions for solid-state sodium-metal batteries (SSMBs). The unique nanoconfinement effectively weakens Na ion coordination with the anions, facilitating the Na ion dissociation from salt. Simultaneously, the well-defined nanopores within ZIF-8 particles provide oriented and ordered migration channels for Na migration. As a result, this pioneering design allows the solid polymer electrolyte to achieve a Na ion transference number of 0.87, Na ion conductivity of 4.01×10 S cm, and an extended electrochemical voltage window up to 4.89 V vs. Na/Na. The assembled SSMBs (with NaV(PO) as the cathode) exhibit dendrite-free Na-metal deposition, promising rate capability, and stable cycling performance with 96 % capacity retention over 300 cycles. This innovative polymer-in-MOF design offers a compelling strategy for advancing high-performance and safe solid-state metal battery technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202318822DOI Listing

Publication Analysis

Top Keywords

polymer electrolyte
12
solid polymer
8
nanopores zif-8
8
zif-8 particles
8
ion
5
confining polymer
4
electrolyte mof
4
mof safe
4
safe high-performance
4
high-performance all-solid-state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!