Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jhm.13297 | DOI Listing |
Comput Biol Med
January 2025
Department of Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Electronic address:
Tiny machine learning (TinyML) and edge intelligence have emerged as pivotal paradigms for enabling machine learning on resource-constrained devices situated at the extreme edge of networks. In this paper, we explore the transformative potential of TinyML in facilitating pervasive, low-power cardiovascular monitoring and real-time analytics for patients with cardiac anomalies, leveraging wearable devices as the primary interface. To begin with, we provide an overview of TinyML software and hardware enablers, accompanied by an examination of networking solutions such as Low-power Wide area network (LPWAN) that facilitate the seamless deployment of TinyML frameworks.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518000, China.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
As the Internet of Things (IoT) expands globally, the challenge of signal transmission in remote regions without traditional communication infrastructure becomes prominent. An effective solution involves integrating aerial, terrestrial, and space components to form a Space-Air-Ground Integrated Network (SAGIN). This paper discusses an uplink signal scenario in which various types of data collection sensors as IoT devices use Unmanned Aerial Vehicles (UAVs) as relays to forward signals to low-Earth-orbit satellites.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
The distributed nature of IoT systems and new trends focusing on fog computing enforce the need for reliable communication that ensures the required quality of service for various scenarios. Due to the direct interaction with the real world, failure to deliver the required QoS level can introduce system failures and lead to further negative consequences for users. This paper introduces a prediction-based resource allocation method for Multi-Access Edge Computing-capable networks, aimed at assurance of the required QoS and optimization of resource utilization for various types of IoT use cases featuring adaptability to changes in users' requests.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
The proliferation of the Internet of Things (IoT) has worsened the challenge of maintaining data and user privacy. IoT end devices, often deployed in unsupervised environments and connected to open networks, are susceptible to physical tampering and various other security attacks. Thus, robust, efficient authentication and key agreement (AKA) protocols are essential to protect data privacy during exchanges between end devices and servers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!