Extracellular vesicles (EVs) hold immense potential for various biomedical applications, including diagnostics, drug delivery, and regenerative medicine. Nevertheless, the current methodologies for isolating EVs present significant challenges, such as complexity, time consumption, and the need for bulky equipment, which hinders their clinical translation. To address these limitations, we aimed to develop an innovative microfluidic system based on cyclic olefin copolymer-off-stoichiometry thiol-ene (COC-OSTE) for the efficient isolation of EVs from large-volume samples in a continuous manner. By utilizing size and buoyancy-based separation, the technology used in this study achieved a significantly narrower size distribution compared to existing approaches from urine and cell media samples, enabling the targeting of specific EV size fractions in future applications. Our innovative COC-OSTE microfluidic device design, utilizing bifurcated asymmetric flow field-flow fractionation technology, offers a straightforward and continuous EV isolation approach for large-volume samples. Furthermore, the potential for mass manufacturing of this microfluidic device offers scalability and consistency, making it feasible to integrate EV isolation into routine clinical diagnostics and industrial processes, where high consistency and throughput are essential requirements.

Download full-text PDF

Source
http://dx.doi.org/10.3791/66019DOI Listing

Publication Analysis

Top Keywords

large-volume samples
12
microfluidic device
12
extracellular vesicles
8
single step
4
isolation
4
step isolation
4
isolation extracellular
4
vesicles large-volume
4
samples
4
samples bifurcated
4

Similar Publications

Advancements in food technology have increased the need for thorough analysis to ensure food safety, quality, and compliance with regulatory requirements. Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful tool in food analysis due to its high separation efficiency, low sample consumption, and ability to handle complex matrices. However, challenges such as the use of volatile running buffers and maintaining the stability of the electrical circuit connecting the CE and MS systems have been addressed through advancements in interface designs, such as sheathless systems and optimized sheath-liquid compositions.

View Article and Find Full Text PDF

The network intrusion detection system (NIDS) plays a critical role in maintaining network security. However, traditional NIDS relies on a large volume of samples for training, which exhibits insufficient adaptability in rapidly changing network environments and complex attack methods, especially when facing novel and rare attacks. As attack strategies evolve, there is often a lack of sufficient samples to train models, making it difficult for traditional methods to respond quickly and effectively to new threats.

View Article and Find Full Text PDF

Ceramic armor protection with complex shapes is limited by the difficult molding or machining processing, and 3D printing technology provides a feasible method for complex-shaped ceramics. In this study, ZrO ceramics were manufactured by 3D printing accompanied with microwave sintering. In 3D printing, the formula of photosensitive resin was optimized by controlling the content of polyurethane acrylic (PUA) as oligomer, and the photosensitive resin with 50% PUA showed excellent curing performance with a small volume shrinkage of 4.

View Article and Find Full Text PDF

Background: The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging.

Objective: This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to standardize qPCR procedures for diagnosing Mucorales by examining factors that influence DNA extraction and PCR amplification efficiency.
  • Two panels of samples were distributed to 26 laboratories, and results showed that using larger serum volumes for DNA extraction and larger input volumes for PCR significantly improved detection sensitivity.
  • Findings highlight the importance of optimizing laboratory techniques to enhance diagnosis of Mucormycosis, a serious fungal infection, which is critical for timely treatment in vulnerable patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!