AI Article Synopsis

  • * The incidence of AKI is rising, often caused by factors like volume depletion, sepsis, nephrotoxicity, muscle injury, and significant trauma, with ischemia-reperfusion injury (IRI) being the most common cause.
  • * The IRI model, developed in mice through surgical clamping of renal blood vessels, is a useful tool for studying AKI and CKD progression, though various factors can affect its results, highlighting the need for standardized procedures in research.

Similar Publications

AP39, a novel mitochondria-targeted hydrogen sulfide donor, promotes cutaneous wound healing in an in vivo murine model of acute frostbite injury.

Biomed Pharmacother

January 2025

Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Electronic address:

Frostbite injury refers to cold tissue injury which typically affects the peripheral areas of the body, and is associated with limb loss and high rates of morbidity. Historically, treatment options have been limited to supportive care, leading to suboptimal outcomes for affected patients. The pathophysiology of frostbite injury has been understood in recent years to share similarity with that of cold ischemia-reperfusion injury as seen in solid organ transplantation, of which mitochondria play an important contributing role.

View Article and Find Full Text PDF

Malachite Green (MG) is an antibiotic with antifungal activity, which is illegal to use in agriculture due to its mutagenic and teratogenic properties. Several scientific papers have been published on MG in fish. Therefore, an attempt was made to determine the meta-analysis concentration of MG in fish based on countries and types of fish subgroups, as well as the health risks of consumers, using the Monte Carlo simulation (MCS) model.

View Article and Find Full Text PDF

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Restoration of Sestrin 3 Expression Mitigates Cardiac Oxidative Damage in Ischemia-Reperfusion Injury Model.

Antioxidants (Basel)

January 2025

Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan 15588, Republic of Korea.

Cardiac ischemia-reperfusion injury (IRI) occurs when blood flow is restored to the myocardium after a period of ischemia, leading to oxidative stress and subsequent myocardial cell damage, primarily due to the accumulation of reactive oxygen species (ROS). In our previous research, we identified that miR-25 is significantly overexpressed in pressure overload-induced heart failure, and its inhibition improves cardiac function by restoring the expression of SERCA2a, a key protein involved in calcium regulation. In this study, we aimed to investigate the role of miR-25 in the context of ischemia-reperfusion injury.

View Article and Find Full Text PDF

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!