Hypoxia-inducible factor-1 (HIF-1) is the master regulator of cellular response to hypoxia, and is activated in many cancers contributing to many steps in the metastatic cascade by acting as a key transcription co-regulator for a large number of downstream genes. Presence of hypoxia within a tumor is spatially nonuniform, and can also by dynamic. Further, although HIF-1 is primarily stabilized and activated by lack of molecular O, its stability is also affected by other factors present in the tumor microenvironment. HIF-1 also crosstalks with other transcription factors in co-regulating gene expression. Consequently, it is nontrivial to predict the gene expression patterns in cells in response to hypoxia, or HIF-1 activation. Additionally, cancers originating from tissue origins with different basal level of partial oxygen tension may activate HIF-1 at different threshold of hypoxia. We analyzed large published single cell RNAseq data for colorectal, lung, and pancreatic cancers to investigate the phenotypic outcome of HIF-1 activation in cancer cells. We found that cancers from tissues with different partial O tension levels exhibit HIF-1 activation at different stages of metastasis, and phenotypically respond differently to HIF-1 activation, likely by contextual co-option of different transcription factors. We experimentally confirmed these predictions by using cell lines representative of colorectal, lung, and pancreatic cancers, finding that while hypoxia enhances growth of colorectal cancer, it induces increased invasion of lung, and pancreatic cancers. Our analysis suggest that HIF-1 activation may act as a rheostat regulating downstream gene expression towards phenotypic outcomes differently in various cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013563PMC
http://dx.doi.org/10.1002/mc.23691DOI Listing

Publication Analysis

Top Keywords

hif-1 activation
24
gene expression
12
lung pancreatic
12
pancreatic cancers
12
hif-1
10
response hypoxia
8
transcription factors
8
colorectal lung
8
cancers
7
activation
6

Similar Publications

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH.

Life Metab

October 2024

CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China.

Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls.

View Article and Find Full Text PDF

Unlabelled: The Sarm1 NAD hydrolase drives neurodegeneration in many contexts, but how Sarm1 activity is regulated remains poorly defined. Using CRISPR/Cas9 screening, we found loss of VHL suppressed Sarm1-mediated cellular degeneration. VHL normally promotes O -dependent constitutive ubiquitination and degradation of hypoxia-inducible factor 1 (HIF-1), but during hypoxia, HIF-1 is stabilized and regulates gene expression.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Acute Severe Hypoxia Decreases Mitochondrial Chain Complex II Respiration in Human Peripheral Blood Mononuclear Cells.

Int J Mol Sci

January 2025

Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.

Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!