Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon. Herein, we design an ideal series of MMMs containing polyethers (one of the leading polymers for CO/N separation) and discrete metal-organic polyhedra (MOPs) with cage sizes of 2-5 nm. Adding 3 mass % MOP-3 in a polyether increases the CO permeability by 100% from 510 to 1000 Barrer at 35 °C because of the increased gas diffusivity. No discernible changes in typical physical properties governing gas transport properties are detected, such as glass transition temperature, fractional free volume, -spacing, etc. We hypothesize that this behavior is attributed to fractal-like networks formed by highly porous MOPs, and for the first time, we validate this hypothesis using small-angle X-ray scattering analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c19631 | DOI Listing |
Food Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan.
Pyrethroids are synthetic chemicals that account for 16% of the international insecticide market and have been shown to be of varying toxicity to different species. There are various methods available for detecting pyrethroids in agricultural products, but these products must be pre-treated to remove interference from the food matrix, such as through dispersion liquid-liquid microextraction (DLLME). This study employed two experimental design methods to optimize the continuous and discontinuous experimental parameters of DLLME and investigated whether DLLME combined with GC-NICI-MS is effective for detecting pyrethroids in agricultural products.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., GR-265 04 Rio-Patras, Greece.
This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
J Orthop Trauma
October 2024
Department of Orthopaedic Surgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea.
Objectives: To compare the consolidation quality between the anteromedial aspect of regenerated bone (AMRB) and other areas of regenerated bone (TORB) following the induced membrane technique (IMT) for managing critical-sized tibial shaft bone defects, and determine the factors affecting consolidation quality in the AMRB.
Methods: Design: Retrospective comparative study.
Setting: Academic Level I trauma center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!