The genus belongs to the Ranunculaceae family, distributed in southeastern Europe and western Asia. In folk medicine, it is commonly used as an anti-inflammatory and analgesic medicine for rheumatoid arthritis and bruises. Through reviewing recent articles, it was found that two hundred and twenty-six compounds have been isolated and identified from the genus . These compounds include steroids, flavonoids, phenylpropanoids, lignans, anthraquinones, phenolics and others. Among them, the main chemical constituents are steroids. Pharmacological studies show has anti-cancer, immunomodulatory, anti-inflammatory, analgesic, anti-hyperglycaemic, antioxidant and antibacterial properties. This article reviews the botany, phytochemistry, pharmacological effects and clinical applications of the genus . Hopefully, it will provide a reference for in-depth research and exploitation of the genus .

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2024.2317880DOI Listing

Publication Analysis

Top Keywords

clinical applications
8
applications genus
8
anti-inflammatory analgesic
8
comprehensive review
4
review phytochemistry
4
phytochemistry pharmacology
4
pharmacology clinical
4
genus
4
genus belongs
4
belongs ranunculaceae
4

Similar Publications

Objective: Acute kidney injury (AKI) is a frequent complication in critically ill patients, affecting up to 50% of patients in the intensive care units. The lack of standardized and open-source tools for applying the Kidney Disease Improving Global Outcomes (KDIGO) criteria to time series, requires researchers to implement classification algorithms of their own which is resource intensive and might impact study quality by introducing different interpretations of edge cases. This project introduces pyAKI, an open-source pipeline addressing this gap by providing a comprehensive solution for consistent KDIGO criteria implementation.

View Article and Find Full Text PDF

Progress in antileishmanial drugs: Mechanisms, challenges, and prospects.

PLoS Negl Trop Dis

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.

Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine.

View Article and Find Full Text PDF

Importance: Digital health in biomedical research and its expanding list of potential clinical applications are rapidly evolving. A combination of new digital health technologies (DHTs), novel uses of existing DHTs through artificial intelligence- and machine learning-based algorithms, and improved integration and analysis of data from multiple sources has enabled broader use and delivery of these tools for research and health care purposes. The aim of this study was to assess the growth and overall trajectory of DHT funding through a National Institutes of Health (NIH)-wide grant portfolio analysis.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Elucidating the Phase I metabolism of psilocin in vitro.

Arch Toxicol

January 2025

Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.

Psilocin is a well-studied controlled substance with potential psychotherapeutic applications. However, research gaps remain regarding its metabolism. Our objective was to elucidate a comprehensive Phase I metabolic profile of psilocin to support its forensic management and clinical development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!