Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To prioritize compounds with a higher likelihood of success, artificial intelligence models can be used to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of molecules quickly and efficiently. Models were trained with BioPrint database proprietary data along with public datasets to predict various ADMET end points for the SAFIRE platform. SAFIRE models performed at or above 75% accuracy and 0.4 Matthew's correlation coefficient with validation sets. Training with both proprietary and public data improved model performance and expanded the chemical space on which the models were trained. The platform features scoring functionality to guide user decision-making. High-quality datasets along with chemical space considerations yielded ADMET models performing favorably with utility in the drug discovery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2024-0007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!