Understanding how the electronic state of transition metal atoms can influence molecular adsorption on a substrate is of great importance for many applications. Choosing NH as a model molecule, its adsorption behavior on defected SnS monolayers is investigated. The number of valence electrons is controlled by decorating the monolayer with different transition metal atoms, ranging from Sc to Zn. Density-Functional Theory based calculations show that the adsorption energy of NH molecules oscillates with and shows a clear odd-even pattern. There is also a mirror symmetry of the adsorption energies for large and low electron numbers. This unique behavior is mainly governed by the oxidation state of the TM ions. We trace back the observed trends of the adsorption energy to the orbital symmetries and ligand effects which affect the interaction between the 3σ orbitals (NH) and the 3d orbitals of the transition metals. This result unravels the role which the spin state of TM ions plays in different crystal fields for the adsorption behavior of molecules. This new understanding of the role of the electronic structure on molecular adsorption can be useful for the design of high efficiency nanodevices in areas such as sensing and photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp05042d | DOI Listing |
Sci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy.
Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.
View Article and Find Full Text PDFNat Commun
December 2024
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!