A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unravelling COVID-19 waves in Rio de Janeiro city: Qualitative insights from nonlinear dynamic analysis. | LitMetric

Since the COVID-19 pandemic was first reported in 2019, it has rapidly spread around the world. Many countries implemented several measures to try to control the virus spreading. The healthcare system and consequently the general quality of life population in the cities have all been significantly impacted by the Coronavirus pandemic. The different waves of contagious were responsible for the increase in the number of cases that, unfortunately, many times lead to death. In this paper, we aim to characterize the dynamics of the six waves of cases and deaths caused by COVID-19 in Rio de Janeiro city using techniques such as the Poincaré plot, approximate entropy, second-order difference plot, and central tendency measures. Our results reveal that by examining the structure and patterns of the time series, using a set of non-linear techniques we can gain a better understanding of the role of multiple waves of COVID-19, also, we can identify underlying dynamics of disease spreading and extract meaningful information about the dynamical behavior of epidemiological time series. Such findings can help to closely approximate the dynamics of virus spread and obtain a correlation between the different stages of the disease, allowing us to identify and categorize the stages due to different virus variants that are reflected in the time series.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867657PMC
http://dx.doi.org/10.1016/j.idm.2024.01.007DOI Listing

Publication Analysis

Top Keywords

time series
12
rio janeiro
8
janeiro city
8
unravelling covid-19
4
waves
4
covid-19 waves
4
waves rio
4
city qualitative
4
qualitative insights
4
insights nonlinear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!