Brazil, the largest global sugar cane producer, utilizes approximately 10 million hectares for cultivation. However, the increased use of agrochemicals in this industry raises concerns about environmental and human health impacts. Inclusively, ametryn (AMT), a pesticide intensively used in sugar cane plantations, has been detected in several water matrices at concerning levels, which evidences the urgent need for the development of technologies capable of removing this pesticide from the environment. This study investigated the removal efficiency of AMT from aquatic environments via oxidation promoted by persulfate (PS) activation mediated by carbon-based materials, such as graphene, carbon nanotubes, and activated carbon. Granular activated carbon (GAC) emerged as the most suitable material due to its clear catalytic role. A central composite design was used to evaluate and optimize the factors influencing AMT degradation and mineralization, revealing that the initial PS concentration and GAC dosage strongly impact the degradation rate and organic carbon removal in different directions. GAC was submitted to surface functionalization with N- and O-precursors to investigate how this impacts PS activation, and positive enhancements were noted with the latter, with a mineralization degree 9% superior. Experiments with real water matrices evidence the impact of other water constituents on the degradation rate of the target pollutant (), which was reduced by half when performed in groundwater. Notwithstanding, the system still demonstrated a consistent capacity to remove organic content, ranging from 60 to 50% TOC, regardless of the water matrix, indicating that the system might be effective in real contamination scenarios. This research highlights the potential of GAC and its modified version for remediation of AMT-contaminated water remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870269PMC
http://dx.doi.org/10.1021/acsomega.3c07479DOI Listing

Publication Analysis

Top Keywords

sugar cane
8
water matrices
8
activated carbon
8
degradation rate
8
carbon
5
water
5
peroxydisulfate activation
4
activation carbon
4
carbon materials
4
degradation
4

Similar Publications

Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.

View Article and Find Full Text PDF

The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.

View Article and Find Full Text PDF

Occupational exposure to smoke and polycyclic aromatic hydrocarbons (PAHs) poses significant health risks, especially for commercial fish smokers who are regularly exposed to high levels of smoke and particulate matter. This study aimed to evaluate the exposure levels and assess the health risks associated with PAHs, phenols, phthalates, and substituted benzenes among 155 fish smokers in Ghana. A total of 155 urine samples from fish smokers across selected coastal regions in Ghana were collected and analyzed.

View Article and Find Full Text PDF

Integrated coagulation-flocculation with nanofiltration and reverse osmosis membrane for treating sugar cane industry effluent.

Heliyon

December 2024

Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d'ingénierie de l'Eau et de l'Environnement (2iE), 1 Rue de la science 01 BP 594 Ouagadougou 01, Burkina Faso.

Sugarcane industries, like other agro-food industries, generate significant volumes of wastewater containing high concentrations of organic and inorganic pollutants. Among the proposed treatment solutions, the anaerobic membrane bioreactor (AnMBR) has proven highly effective in degrading organic pollutants but has limitations in removing color and inorganic pollutants. To address this gap, integrating other technologies with AnMBR is necessary.

View Article and Find Full Text PDF

Remontant raspberry cultivars originally produce fruit in the upper part of primocanes in the fall, but if retained over winter, they can produce a second crop in the lower part of the floricanes the following spring. Maintaining remontant cultivars to yield twice during the cane's growth cycle corresponds to a double-cropping system, which enables an increase in the total yield and the extension of the fruiting season. To date, there is little information on changes in fruit quality between primocane and floricane crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!