A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of V-Shaped Pits on Promoting Hole Injection in the InGaN MQWs: First-Principles Investigation. | LitMetric

In the InGaN multiple quantum wells (MQWs), V-shaped pits play a crucial role in carrier transport, which directly affects emitting efficiency. First-principles calculations are applied to investigate the formation of the V-shaped pits, and the results indicate that they are inclined to form in the N-rich environment. Meanwhile, we calculate the interfacial electronic properties of the sidewalls of the V-shaped pits with varying indium (In) and magnesium (Mg) compositions. The calculated valence band offset (VBO) of the InGaN/GaMgN (0001) is 0.498 eV, while that of the InGaN/GaMgN (101̅1) is 0.340 eV. The band alignment results show that the valence band edges in the GaMgN layer are in higher energy than in the InGaN layer. These are in good agreement with the values reported in the previous numerical simulation. Moreover, the calculation of the projected density of states (PDOS) of interfaces discloses that the strong hybridization between the N 2p orbital and the Mg 2p orbital exerts a vital influence on the upward shifts of the valence band edges in the superlattices (SLs). All these results reveal that holes are easier to inject into the quantum wells (QWs) via the sidewall of V-shaped pits rather than the -plane QWs, providing a theoretical basis for the growth of InGaN MQWs samples containing V-shaped pits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870398PMC
http://dx.doi.org/10.1021/acsomega.3c09221DOI Listing

Publication Analysis

Top Keywords

v-shaped pits
24
valence band
12
ingan mqws
8
quantum wells
8
band edges
8
pits
6
v-shaped
5
mechanism v-shaped
4
pits promoting
4
promoting hole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!