Poly(ethylene succinate--lactic acid) as a Multifunctional Additive for Modulating the Miscibility, Crystallization, and Mechanical Properties of Poly(lactic acid).

ACS Omega

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

Published: February 2024

Polymer blending offers an effective and economical approach to overcome the performance limitations of poly(lactic acid) (PLA). In this study, a series of copolymers poly(ethylene succinate--lactic acid) (PESL) were synthesized, featuring lactic acid (LA) contents that ranged from 20 to 86 wt %. This synthesis involved a one-pot industrial melt polycondensation process using succinic acid (SA), ethylene glycol (EG), and LA, catalyzed by titanium tetraisopropoxide (TTP). The goal was to produce a fully biobased copolymer expected to exhibit partial miscibility with pure poly(lactic acid) (PLA). To assess the capability of PESL copolymers in toughening PLA, we conducted tensile testing on PLA/PESL blends containing 15 wt % PESL. As a result, an elongation at break for the blends with 15 wt % loading of the copolymer PESL72 was directly enhanced to 250% with an ultimate strength of 35 MPa, compared to brittle PLA with less 10% tensile length. The morphological features of interfacial adhesion before and after tensile failure were measured by scanning electron microscopy (SEM). A significant enhancement in the chain mobility of the PLA/PESL blends was further evidenced by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). These findings hold promise for the development of functional packaging materials based on PLA. The proposed copolymer design, which boasts strong industrial feasibility, can serve as a valuable guide for enhancing the toughness of PLA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870275PMC
http://dx.doi.org/10.1021/acsomega.3c07489DOI Listing

Publication Analysis

Top Keywords

polylactic acid
12
polyethylene succinate--lactic
8
succinate--lactic acid
8
acid pla
8
pla/pesl blends
8
acid
7
pla
6
acid multifunctional
4
multifunctional additive
4
additive modulating
4

Similar Publications

Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.

View Article and Find Full Text PDF

Polylactic acid (PLA) is a bio-recyclable plastic, but its high flammability limits broader applications. Here, a novel flame retardant (Zn-CHP) is synthesized from chitosan (CH), diethylenetriaminepenta (methylenephosphonic) acid (DTPMP), and ZnCl₂ using a simple, solvent-free process. The Zn-CHP additive is melt-blended with PLA, achieving excellent flame retardancy at just 2 wt% loading.

View Article and Find Full Text PDF

Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!