double mutants are necessary and sufficient for the compact plant architecture of butterhead lettuce.

Hortic Res

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China.

Published: February 2024

Lettuce, an important leafy vegetable crop worldwide, has rich variations in plant architecture. Butterhead lettuce, a popular horticultural type, has a unique plant architecture with loose leafy heads. The genetic and molecular mechanisms for such a compact plant architecture remain unclear. In this study we constructed a segregating population through crossing a butterhead cultivar and a stem lettuce cultivar. Genetic analysis identified the gene, which encodes a kinase, as the candidate gene controlling butterhead plant architecture. The gene in the butterhead parent had a nonsense mutation, leading to a partial predicted protein. CRISPR/Cas9 and complementation tests verified its functions in plant architecture. We showed that the loss of function of is necessary but not sufficient for the butterhead plant architecture. To identify additional genes required for butterhead lettuce, we crossed a butterhead cultivar and a crisphead cultivar, both with the mutated gene. Genetic mapping identified a new gene encoding an ATPase contributing to butterhead plant architecture. Knockout and complementation tests showed that loss of function of is also required for the development of butterhead plant architecture. The double mutation could reduce leaf size and leaf angle, leading to butterhead plant architecture. Expression and cytology analysis indicated that the loss of function of and contributed to butterhead plant architecture by regulating cell wall development, a regulatory mechanism different from that for crisphead. This study provides new gene resources and theory for the breeding of the crop ideotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873588PMC
http://dx.doi.org/10.1093/hr/uhad280DOI Listing

Publication Analysis

Top Keywords

plant architecture
44
butterhead plant
24
butterhead
12
butterhead lettuce
12
loss function
12
plant
11
architecture
11
compact plant
8
architecture butterhead
8
butterhead cultivar
8

Similar Publications

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.

View Article and Find Full Text PDF

Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary).

Plants (Basel)

January 2025

Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.

The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.

View Article and Find Full Text PDF

The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.

View Article and Find Full Text PDF

In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!