entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes' anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled HGB2511 bacteria were created and associated with their . symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of localization and interactions with its nematode and insect host tissues throughout their lifecycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874491 | PMC |
http://dx.doi.org/10.17912/micropub.biology.001064 | DOI Listing |
Nutrients
December 2024
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Intestinal aging is characterized by declining protein homeostasis via reduced proteasome activity, which are hallmarks of age-related diseases. Our previous study showed that caffeine intake improved intestinal integrity with age by reducing vitellogenin (VIT, yolk protein) in . In this study, we investigated the regulatory mechanisms by which caffeine intake improves intestinal integrity and reduces vitellogenin (VIT) production in aged .
View Article and Find Full Text PDFMicroorganisms
December 2024
Federal Research Center of Biological Plant Protection, p/o 39, 350039 Krasnodar, Russia.
The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.
View Article and Find Full Text PDFMicroorganisms
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.
View Article and Find Full Text PDFMicroorganisms
November 2024
Centro de Estudios en Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), CONAHCYT-Universidad Autónoma de Campeche, San Francisco de Campeche 24079, Campeche, Mexico.
We examined the infective capacity of the mermithid nematodes, , , , and in fourth-instar mosquito larvae nearing pupation of , , and to determine their prevalence in the adults of these mosquitoes. We exposed fourth-instar larvae to pre-parasitic nematodes (juvenile 2 stages) at a ratio of 10:1 (10 nematodes per mosquito larvae). Two days after the nematode applications, a sample of 20 pupae was taken and placed into transparent plastic cups with distilled water to observe the development and growth of pupae until they reached the adult phase with nematodes inside.
View Article and Find Full Text PDFPathogens
December 2024
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China.
is a parasite transmitted by mosquitoes and can cause a neglected tropical disease called Lymphatic filariasis. However, the genome of was not well studied, making novel drug development difficult. This study aims to identify microRNA, annotate protein function, and explore the pathogenic mechanism of by genome-wide analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!