Introduction: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare complication of metastatic carcinoma, which occurs in patients with pulmonary arterial hypertension, and is mostly fatal. Circulating tumor cell clusters have been recognized as critical factors during breast cancer progression.
Case Presentation: An 80-year-old woman with triple-negative breast cancer was admitted to our hospital with progressive dyspnea and lower back pain. Breast cancer treatment included mastectomy, neoadjuvant and adjuvant chemotherapy as well as adjuvant radiotherapy, receiving her last cycle of radiotherapy 8 days before death. At admission, D-dimers were strongly elevated and platelets were low. NT-pro-BNP was moderately elevated. A CT scan of the chest did not show pulmonary embolism but revealed interlobular septal thickening, centrilobular consolidation, and distension of the pulmonary arteries. Moreover, new skeletal and most likely lymphatic metastasis was described. Treatment with oxygen and oral glucocorticoids was initiated, assuming radiotherapy-induced pneumonitis. Due to low expression of PD-L1 and her markedly bad performance status, tumor-specific therapy was not possible, and the treatment regimen was changed to best supportive care. The patient died 8 days after admission. Autopsy revealed numerous events consistent with tumor emboli in the pulmonary vessels, suggesting PTTM.
Conclusion: PTTM is a rare and mostly fatal complication in malignant breast cancer. As an early detection is difficult, further investigation is needed. Circulating tumor cluster cells may be one way to detect PTTM early and improve patients' survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870124 | PMC |
http://dx.doi.org/10.1159/000535873 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!