AI Article Synopsis

  • Single cell RNA sequencing (scRNAseq) is changing how we study gene expression, but it often only shows the differences between cell types in a basic 2D plot.
  • The new method, called vSPACE, creates a virtual spatial map of scRNAseq data from human articular cartilage, mimicking spatial transcriptomics.
  • This approach reveals consistent zonal distribution patterns in gene expression across various healthy donors, indicating reliable insights despite differences in age and sex.

Article Abstract

Single cell RNA sequencing technology has been dramatically changing how gene expression studies are performed. However, its use has been limited to identifying subtypes of cells by comparing cells' gene expression levels in an unbiased manner to produce a 2D plot (e.g., UMAP/tSNE). We developed a new method of placing cells in 2D space. This system, called vSPACE, shows a virtual spatial representation of scRNAseq data obtained from human articular cartilage by emulating the concept of spatial transcriptomics technology, but virtually. This virtual 2D plot presentation of human articular cartage cells generates several zonal distribution patterns, in one or multiple genes at a time, reveling patterns that scientists can appreciate as imputed spatial distribution patterns along the zonal axis. The discovered patterns are explainable and remarkably consistent across all six healthy doners despite their respectively different clinical variables (age and sex), suggesting the confidence of the discovered patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871300PMC
http://dx.doi.org/10.1101/2024.02.07.577817DOI Listing

Publication Analysis

Top Keywords

virtual spatial
8
spatial representation
8
gene expression
8
human articular
8
distribution patterns
8
discovered patterns
8
patterns
5
vspace exploring
4
exploring virtual
4
spatial
4

Similar Publications

Integration of partially observed multimodal and multiscale neural signals for estimating a neural circuit using dynamic causal modeling.

PLoS Comput Biol

December 2024

Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea.

Integrating multiscale, multimodal neuroimaging data is essential for a comprehensive understanding of neural circuits. However, this is challenging due to the inherent trade-offs between spatial coverage and resolution in each modality, necessitating a computational strategy that combines modality-specific information effectively. This study introduces a dynamic causal modeling (DCM) framework designed to address the challenge of combining partially observed, multiscale signals across a larger-scale neural circuit by employing a shared neural state model with modality-specific observation models.

View Article and Find Full Text PDF

Background Virtual reality (VR) is typically used for entertainment or gaming, but many studies have shown that the applications of VR can also extend to medical and clinical education. This is because VR can help health professionals learn complex subjects, improve memory, and increase interest in abstract concepts. In the context of medical education, the immersive nature of a VR setting allows students and clinicians in training to interact with virtual patients and anatomical structures in a three-dimensional environment or from a clinician's point of view.

View Article and Find Full Text PDF

Objectives: This study summarized current findings on age differences (young vs. older adults) in pedestrian navigational performance, spatial learning, and examined moderating effects of experimental environment (e.g.

View Article and Find Full Text PDF

Protocol for high-resolution 3D spatial transcriptomics using Open-ST.

STAR Protoc

December 2024

Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany; Charité - Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany. Electronic address:

Spatial transcriptomics (ST) is fundamental for understanding molecular mechanisms in health and disease. Here, we present a protocol for efficient and high-resolution ST in 2D/3D with Open-ST. We describe all steps for repurposing Illumina flow cells into spatially barcoded capture areas and preparing ST libraries from stained cryosections.

View Article and Find Full Text PDF

For individuals with motor complete spinal cord injury (SCI), previous works have shown that spared motor neurons below the injury level can still be voluntarily controlled. In this study, we investigated the behavior of these neurons after SCI by analyzing neural and spatial properties of individual motor units using high-density surface electromyography (HDsEMG) and ultrasound imaging. The dataset for this study is based on motor unit data from our previous work (Oliveira .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: