A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sub-second and multi-second dopamine dynamics underlie variability in human time perception. | LitMetric

Timing behaviour and the perception of time are fundamental to cognitive and emotional processes in humans. In non-human model organisms, the neuromodulator dopamine has been associated with variations in timing behaviour, but the connection between variations in dopamine levels and the human experience of time has not been directly assessed. Here, we report how dopamine levels in human striatum, measured with sub-second temporal resolution during awake deep brain stimulation surgery, relate to participants' perceptual judgements of time intervals. Fast, phasic, dopaminergic signals were associated with underestimation of temporal intervals, whereas slower, tonic, decreases in dopamine were associated with poorer temporal precision. Our findings suggest a delicate and complex role for the dynamics and tone of dopaminergic signals in the conscious experience of time in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871373PMC
http://dx.doi.org/10.1101/2024.02.09.24302276DOI Listing

Publication Analysis

Top Keywords

timing behaviour
8
dopamine associated
8
dopamine levels
8
levels human
8
experience time
8
dopaminergic signals
8
dopamine
5
time
5
sub-second multi-second
4
multi-second dopamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!