In the context of rapid climate change, phenological advance is a key adaptation for which evidence is accumulating across taxa. Among vertebrates, phenotypic plasticity is known to underlie most of this phenological change, while evidence for micro-evolution is very limited and challenging to obtain. In this study, we quantified phenotypic and genetic trends in timing of spring migration using 8,032 dates of arrival at the breeding grounds obtained from observations on 1,715 individual common terns () monitored across 27 years, and tested whether these trends were consistent with predictions of a micro-evolutionary response to selection. We observed a strong phenotypic advance of 9.3 days in arrival date, of which c. 5% was accounted for by an advance in breeding values. The Breeder's equation and Robertson's Secondary Theorem of Selection predicted qualitatively similar evolutionary responses to selection, and these theoretical predictions were largely consistent with our estimated genetic pattern. Overall, our study provides rare evidence for micro-evolution underlying (part of) an adaptive response to climate change in the wild, and illustrates how a combination of adaptive micro-evolution and phenotypic plasticity facilitated a shift towards earlier spring migration in this free-living population of common terns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872114PMC
http://dx.doi.org/10.1093/evlett/qrad014DOI Listing

Publication Analysis

Top Keywords

spring migration
12
micro-evolutionary response
8
climate change
8
phenotypic plasticity
8
evidence micro-evolution
8
common terns
8
response spring
4
migration timing
4
timing wild
4
wild seabird
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!