Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Gray-scale ultrasound (US) is the standard-of-care for evaluating thyroid nodules (TNs). However, the performance is better for the identification of hypoechoic malignant TNs (such as classic papillary thyroid cancer) than isoechoic malignant TNs. Quantitative ultrasound (QUS) utilizes information from raw ultrasonic radiofrequency (RF) echo signal to assess properties of tissue microarchitecture. The purpose of this study is to determine if QUS can improve the cancer risk stratification of isoechoic TNs.
Methods: Patients scheduled for TN fine needle biopsy (FNB) were recruited from the Thyroid Health Clinic at Boston Medical Center. B-mode US and RF data (to generate QUS parameters) were collected in 274 TNs (163 isoechoic, 111 hypoechoic). A linear combination of QUS parameters (CQP) was trained and tested for isoechoic [CQP(i)] and hypoechoic [CQP(h)] TNs separately and compared with the performance of conventional B-mode US risk stratification systems.
Results: CQP(i) produced an ROC AUC value of 0.937+/- 0.043 compared to a value of 0.717 +/- 0.145 (p >0.05) for the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS) and 0.589 +/- 0.173 (p >0.05) for the American Thyroid Association (ATA) risk stratification system. In this study, CQP(i) avoids unnecessary FNBs in 73% of TNs compared to 55.8% and 11.8% when using ACR TI-RADS and ATA classification system.
Conclusion: This data supports that a unique QUS-based classifier may be superior to conventional US stratification systems to evaluate isoechoic TNs for cancer and should be explored further in larger studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869503 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1326188 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!