Characterizing sorbent affinity for a target compound (described by sorbent-water distribution coefficient, K) is a necessary step in the sorbent selection and performance-testing process in the process of capturing aquatic contaminants. However, no standardized procedure exists to measure K, and studies display significant variations in set-up and performance. For per- and polyfluoroalkyl substances (PFAS), most K determinations employ batch experiments with small-scale water-sorbent mixtures, methanol-based spike of target compound(s), and analysis after assumed equilibrium, but methodological details of the above procedure differ and might cause artifacts in the determination of K. We conducted several batch experiments systematically varying a general procedure to characterize effects of sub-optimal experimental design. Using a selection of PFAS (6-carbon fluorinated chain length with differing functional groups) and two sorbents, we tested variations of solution:sorbent ratio, methanol content, and PFAS initial concentration, and compared derived K values. Each methodological component affected log(K), usually by suppressing the value (by 0-48%) when compared with a "best design" procedure. Thus, we suggest (1) a reference procedure for PFAS and sorbents used here, and (2) general guidelines for batch experiment design with different compounds and sorbents. Additionally, we report well-constrained K values for 23 PFAS and two sorbents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868547PMC
http://dx.doi.org/10.1021/acsestwater.3c00084DOI Listing

Publication Analysis

Top Keywords

artifacts determination
8
per- polyfluoroalkyl
8
sorbent-water distribution
8
batch experiments
8
pfas sorbents
8
procedure
5
pfas
5
avoiding artifacts
4
determination per-
4
polyfluoroalkyl substance
4

Similar Publications

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

Third trimester fetal 4D flow MRI with motion correction.

Magn Reson Med

January 2025

Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Purpose: To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.

Methods: A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work.

View Article and Find Full Text PDF

It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.

View Article and Find Full Text PDF

High-resolution awake mouse fMRI at 14 tesla.

Elife

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.

High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!