The tallow or butter tree ( Sabine) is a ligneous forest species of multipurpose use largely distributed in Sub-Sahara Africa. Owing to the biological properties of different parts of the tree and physicochemical properties, as well as the numerous benefits of its fruits, research on products, especially kernels and butter, has now gained more interest. Thus, the scientific literature revealed that butter is a more promising product with good physical and technological characteristics. It is traditionally preferred in households for food, medicine, and cosmetic use. Apart from the fruits, all other parts of the butter tree are used by local communities in folk medicine. The existing studies indicated that contains valuable health-promoting compounds such as phenolic compounds, vitamins, minerals, and essential fatty acids. and derived products have antioxidant, antimicrobial, anti-inflammatory, antiplasmodial, antitumor, estrogenic, anti-androgenic, and cholesterol-regulative effects. Since studies on the biological properties of the tree parts, nutritional composition, and physicochemical properties of food products from the tree have been very limited, this review attempts to summarize some results from recent investigations. Our intention in the present review was to give an overview of the biological activities of plants and an account of the potential properties of products (pulp, kernels, and butter) and outline the way for future relevant research to improve their state of knowledge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867462PMC
http://dx.doi.org/10.1002/fsn3.3806DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
12
biological activities
8
butter tree
8
biological properties
8
kernels butter
8
butter
6
properties
6
tree
5
chain nuts
4
nuts butter
4

Similar Publications

Amyloid fibrils have recently emerged as promising building blocks for functional materials due to their exceptional physicochemical stability and adaptable properties. These protein-based structures can be functionalized to create hybrid materials with a diverse range of applications. Here we report a simple eco-friendly protocol for generating amyloid fibrils from hen egg white lysozyme decorated with gold nanoparticles that can self-assemble in a hydrogel.

View Article and Find Full Text PDF

Metal-organic frameworks for the separation of xylene isomers.

Chem Soc Rev

January 2025

Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Xylene isomers, including -xylene (X), -xylene (X), -xylene (X), and ethyl benzene (EB), are important raw materials in industry. The separation of xylene isomers has been recognized as one of the "seven chemical separations to change the world". However, because of their similar physicochemical properties, totally separating four xylene isomers has remained a big challenge until now.

View Article and Find Full Text PDF

Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.

View Article and Find Full Text PDF

In this study, we optimal the ultrasound-assisted ionic liquid extraction (UAILE) process of polysaccharides from Crataegus songarica K. Koch fruits. The optimal conditions determined were: ultrasonic power of 400 W, temperature of 79 ℃, extraction time of 78 min, Ethylammonium dodecyl sulfate (EADS) concentration of 1.

View Article and Find Full Text PDF

Combinational therapy to treat triple-negative breast cancer (TNBC) by concomitantly influencing different cellular pathways has attracted attention recently. In the present study, co-delivery of dasatinib and miR30a by means of CRGDK-targeted lipopolyplexes was conducted to enhance the inhibition of cell proliferation and migration. For this purpose, we condensed the cationic copolymer poly(1-vinylimidazole--2-aminoethyl methacrylate) with miR-30a to form polyplexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!